神戸コンシューマー・スクール 2009 での

Web 版 xcampus 分析操作事例・続編

- 講演会評価・顧客満足度・食品栄養成分のカラー可視化の試み -

兵庫県立大学経済学部 斎 藤 清

目 次

はしがき1
§6. 講習会評価アンケートの知見・興味・理解の三色三角バブルグラフ2
§7.顧客満足度アンケートの品質・価格・付随サービスの三色三角バブルグラフ
§8. 顧客満足度の品質・価格・付随サービスのメーカ識別三色三角バブルグラフ12
§9.講習会評価(評価点配分方式)のスカイライン図・扇形散布図・三次元三色虫ピングラフ17
§10. 食品・外食の栄養成分表示のスカイライン図・扇形散布図・三次元三色虫ピングラフ23
§11. 食品・外食の栄養成分表示の蛋白質・脂質・炭水化物の三色三角バブルグラフ
§12. 食品成分の脂肪酸構成のスカイライン図・扇形散布図・三次元三色虫ピングラフ
§13. 食品成分の脂肪酸構成の飽和・一価不飽和・多価不飽和の三色三角バブルグラフ
参考文献

はしがき

2009 年9月に消費者庁が発足し,神戸市役所は,消費者問題の専門家を育成するために「神戸コンシューマー・スクール」(土曜日開講)を2009 年9月に開設した。その第1期は2010 年3月に修了し,修了生30名は「消費生活マスター」として神戸市に登録され,消費者教育の指導的活動を担うことが期待されている。 第2期(募集人員30名)は2010 年4月から開始され,約1年に亘って開講される。筆者もその講師の一人として経済・消費データの解析を,第1期に引き続き担当する予定である。

本稿¹は,前稿[2010年2月]の続編であり,筆者開発のXCAMPUS(探索的経済経営データ処理シス テム eXploratory Computer Aided Macro-economic and micro-economic data Processing Universal System)による新たな分析事例の操作資料である。xcampus ビューアのインストール手順は,前稿の§2に 記載している。データ入力や描画などで Microsoft Excel を多用するが,神戸コンシューマー・スクールで用 いるパソコンの Microsoft Office のバージョンが 2003 であるので,本稿の記述もそのバージョンに合わせて いる²。目次のセクション番号は前稿の続きとして§6から開始している。

§6では,仮想の講習会評価アンケートで知見(為になる)・興味(おもしろい)・理解(分かる)の項目ご との評価点を用いて三色三角バブルグラフを作画する。§7では,仮想の商品に対する顧客のアンケートで品 質(良い)・価格(安い)・付随サービス(親切)の項目ごとの満足度を用いて三色三角バブルグラフを作画す る。§8では、§7と同じデータでメーカー識別を反映させたグラフを作成する。§9は、§6と同様の仮想の 講習会評価アンケートであるが,総合的な評価点を聞き,それを知見(為になる)・興味(おもしろい)・理解 (分かる)の項目に配分する形式で行い,スカイライン図,扇形散布図,三次元三色虫ピングラフを作成する。 §10 では,食品や外食で行われている栄養成分表示の実際のデータを用いて,スカイライン図,扇形散布 図,三次元三色虫ピングラフを作成する。§11 では,§10と同じデータを用いて,蛋白質・脂質・炭水化物の 三色三角バブルグラフを作画する。§12 では,五訂増補日本食品成分表のデータから,穀類の脂肪酸構成に 関するスカイライン図,扇形散布図,三次元三色虫ピングラフを作成する。§13 では,§12と同じデータを 用いて飽和・一価不飽和・多価不飽和の脂肪酸構成の三色三角バブルグラフを作成する。

描画グラフの説明や解釈は省略し,操作手順のみを記述している。本稿の操作手順の公開により,Web版 xcampus 独自のカラー・グラフが身近なものになることを願っている。

¹ ゼミ受講生や神戸市市民参画推進局消費生活課担当者との意見交換や,研究発表会(2010年2月27日)での多数の報告事例 と各講師のコメントなどが,本稿執筆の契機となっている。ここに記して感謝申し上げたい。

² Microsoft Excel, Microsoft Officeなど本稿に記載の社名および商品名は各社の商標または登録商標である。 兵庫県立大学経済経営研究所「研究資料」 230 2010年3月

§6.講習会評価アンケートの知見・興味・理解の三色三角バブルグラフ

次のような講習会評価アンケート(評価点加算方式)を行ったと想定する。

講習会で「知見」が得られた(要する為になった)かどうかにについて,10点満点でお答えください。 講習会で「興味」が湧いた(要するにおもしろかった)かどうかについて,10点満点でお答えください。 講習会で「理解」できた(要するに分かった)かどうかについて,10点満点でお答えください。 そして,3項目の評価点を単純に合計して,その合計点に占める「知見」(為になる)評点の構成比,「興味」 (おもしろい)評点の構成比,「理解」(分かる)評点の構成比の3変量による三色三角バブルグラフを描く。 その際に散布点の大きさ(バブル)は評価点合計に比例させる。

X M	icrosoft	Excel-te	ernary-student-ev	aluation-uc.xls									
	ファイル(E)	編集(E)	表示(V) 挿入(1) 書	式(@) ツール(T) ラ	データ(<u>D</u>) ウィンドウ(⊻	∅ ヘルプ(円)				質問を入力	してください	6	5 ×
	🛩 🔲 d	a 🛯 🔿	R 🖤 🕺 🖻 🙉	• 🛷 🗠 • ભ •	🎑 Σ + 🛃 🛍	100% - 🕐 🔌	MS Pゴシッ	1 - ל	1 - в т	1 = = =	- 199 - 🔌	- <u>A</u> -	, »
	B9		<i>€</i> 受講者									_	•
	A	В	C	D	E	F	G	Н	I	J	К	L	
1					「神戸コンシュー"	マー・スクール」資	料						
2					作成:兵庫県立7	大学 経済学部 斎!	藤 清						
3					2010年2月18日								
4			仮想の講習会評価	5アンケート									
5			講習会で「知見」が	「得られた(要する	為になった)かど	うかにについて, 1	0点満点でお	ち答えくださ	<u>0</u>				_
6			講習会で「興味」か	「湧いた(要するに	おもしろかった)た	<u>いどうかについて,</u>	10点満点で	お答えくだる	きい				_
7			「講習会で「理解」で	ぎた(要するに分	かった)かどうか!	こついて,10点満)	点でお答えく	(ださい					_
8					7m271//// 7								
9			知見(為になる)	興味(おもしろい)	理解(分かる)	評111点合計							
10	1	a	6	6	2	14							
11	2	а -	2	10	3	15		左方ゴ、 カ	±11.051/0	±7-1+ -610	Δ		
12	3	G d	I	#N/A	4	#N/A		大府ナーダ	のツ #N/A	aticia - NA	0		
1.1	4	u o	3	10	10								
15	6	e f	2	10	10	12							
16	7	σ	9	8	2	19							
17	8	h	7	2	1	10							
18	9	i	0	0	0	0		すべてゼロ	評価				
19	10	j	8	2	8	18							
20	11	k	1	7	6	14							
21	12	1	10	6	7	23							
22													
22	N NAG	Frankt /Gra	nh?\Sheet1 /										- E
网形	の調整(R)		-> <u>√(),23(1</u>) ->τ1⊅(U) + ∖ ∖ [./ • A • = =						· _	-1.1
עדב	K				· comi mini ·						MUM		

Excel に仮想講習会評価アンケート(評価点加算方式)の調査結果を記述

B9のセルをクリックし, E21のセルまでドラッグして選択 F11 キーをクリックして, グラフ作成

C10のセルをクリックし, E21のセルまでドラッグして選択して[コピー]

🔀 М	icrosoft	Excel - te	ernary-student-ev	aluation-uc.xls									×
	ファイル(<u>F</u>)	編集(<u>E</u>)	表示(业) 挿入(型) 書	式(①) ツール(①) テ	"ータ(<u>D</u>) ウィンドウ(<u>M</u>	() ヘルプ(円)				質問を入力	してください		×
	൙ 🔲 d	a 🛯 🗛	R. 🖤 🕹 🖻 🙉	• 🛷 🗠 - 🖓 •	🧟 Σ - 🤃 🛍	100% - 🕐 🔌	MS Pゴシッ	ל י 1	1 • B I	IEEE	- m - 🕭	- <u>A</u> -	»
	010	-	f× 6									_	
	A	В	C	D	E	F	G	Н	I	J	К	L	Ξ
1			_		- 「神戸コンシューマ	マー・スクール」資							
2					作成:兵庫県立プ	大学 経済学部 斎	「藤清						
3					2010年2月18日								
4			仮想の講習会評価	iアンケート									
5			講習会で「知見」か	『得られた(要する	為になった)かど	うかにについて,	10点満点でお	お答えくださ	1				- 1
6			講習会で「興味」か	潮いた(要するに	おもしろかった)カ	いどうかについて	,10点満点で	?お答えくだる	きい				- 1
7			講習会で「理解」で	きた(要するに分	かった)かどうかに	こついて,10点滝	「点でお答え。	ください					-
8				Annual Calculation and A									- 1
9		受講者	<u> 知見(為になる)</u>	興味(おもしろい)	<u>理解(分かる)</u>	<u>評価点合計</u>							-
10	1	a	6	6	2	1.	4						-
11	2	b	2	10	3	1:	2	たまご た	tell uni/a	±7-1+ ->14	^		-
12	3		I	#N/A	4	#N/A	7	火冷テージ	のツ #N/A	aticia - NA	0		-
1.0	4	u o	3	4	10		2						-
15	6	e f	2	10	10	21	2						-
16	7	σ	9	8	2	11	2						
17	8	e h	7	2	1	11	้า						
18	9	i	0	0	0		2	すべてゼロ	評価				
19	10	i	8	2	8	11	3						
20	11	k	1	7	6	1.	4						
21	12	1	10	6	7	2	3						
22													
22	N NNG	Smaht (Gra	nh?) Shoot1 /										-
I⊠⊞∕	/////////////////////////////////////		$\frac{1}{\sqrt{1}}$		··· 🔊 💽 💩 🗸	. / . A . = =							1
עדב עדב	5				194 LONG 18882 <u>1941</u> .		··· ++ *****/	•			NUM		

Web 版 xcampus のページ ternary-student-evaluation-uc.htm のフォームに [貼り付け]

兵庫県立大学経済経営研究所「研究資料」 230 2010年3月

 S=(X+Y+Z)
 // 評価点合計 S

 x=(X/S)*100
 // 知見構成比 x

 y=(Y/S)*100
 // 興味構成比% y

 z=(Z/S)*100
 // 理解構成比% z

 p=:ci(x)
 // データの散布点印字用の文字系列 p

 =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント \$r // 回帰コマンド , run, y=(x,z) // 被説明変数 y , 説明変数 x,z による重回帰の計測 , run, Y=(X,Z) // 被説明変数 Y , 説明変数 X,Z による重回帰の計測 -----\$t // 変数変換コマンド // 関数f y= -x -z +100 (つまり x+y+z = 100) f=(-1,-1,+100) i=(100,50,0,0,0,50) // 三角形の頂点と中点の座標 j = (0, 50, 100, 50, 0, 0)k=(0,0,0,50,100,50)Q=:ci(i)***** // 三角形の頂点と中点の3次元図印字用の文字系列Q // 原点の変量(ケースの数はデータ分) @=(0*x) i=(@,i) // 原点の変量と三角形の頂点と中点を連結した変量 j=(@,j) k=(@.k) // データの散布点印字変量 p と頂点と中点の印字変量 Q の連結 Q=(p,Q)Q, nam, : ci, Q=(p,Q) // 印字変量 Q が文字系列であることを示す変量名に変更 =pr*(i,j,k,Q) // 数値プリントしてチェックするには先頭....を取る ----- 三角グラフ平面用に変換 Y=(y) // データの三角グラフ平面への縦軸変換 X=(2*x+y)/1.7320508 // データの三角グラフ平面への横軸変換 U=(1.732,0) // 関数 U Y=1.732X+0 V=(-1.732,200) // 関数 V Y=-1.732X+200 // 三角形の頂点と中点の三角グラフ平面への縦軸変換 J=(j) I=(2*i+j)/1.7320508 // 三角形の頂点と中点の三角グラフ平面への横軸変換 ----a=(0,0,70) // 小さい三角形の頂点の座標 b=(0,70,0)c=(100, 30, 30).... // @は @=(0*x) として定義済みで,原点の変量(ケースの数はデータ分) // 原点の変量と小さい三角形の頂点を連結した変量 a=(@.a) b=(@,b) C=(@,C) -----B=(b) // 小さい三角形の頂点の三角グラフ平面への縦軸変換 A=(2*a+b)/1.7320508 // 小さい三角形の頂点の三角グラフ平面への横軸変換 v=(-1.732,140) // 関数 v Y=-1.732X+ (70*2) 小さい三角形の右辺 ========== グラフセクション \$\$g ----- ゼロ軸表示 \$z xyzXY // 変量 xyzXY についてゼロ軸表示 ----- 目盛 \$g X,001 // X 変量の目盛 1 間隔(標準は 10 間隔) Y,001 // X 変量の目盛 1 間隔(標準は 10 間隔) ----- 3 次元図 \$3 // 三角グラフ立体 j,i,k,Q,* // 縦軸j,横軸i,奥行軸k,散布点印字Q,合成用保存* y,x,z,p=S,f,* // 縦軸 y, 横軸 x, 奥行軸 z, 印字 p=バブル変量 S, 関数 f, 合成用保存* // 合成 \$3 // 三角グラフ平面 J,I,,Q,* // 縦軸J,横軸I,奥行軸なし,印字Q,合成用保存* \$3 Y,X,,p=S,U,V,* // 縦軸 Y,横軸 X,奥行軸なし,印字 p=バブル変量 S,関数 U,V,合成用保存* // 合成 \$3 // 小さい三角グラフ平面 B,A, ,Q,* // 縦軸 B, 横軸 A, 奥行軸なし, 印字 Q, 合成用保存* Y,X, ,p=S,U,v,* // 縦軸Y, 横軸X, 奥行軸なし,印字 p=バブル変量 S,関数 U,v,合成用保存* // 合成 ======================== 終了セクション \$\$ // 終了セクション

送信結果に対して[編集] [すべて選択]して反転させ, [編集] [コピー] xcampus ビューア の [Web 結果の貼り付け] ボタン CCCC をクリック 下記の xcampus ビューアの操作で講習会評価構成比の3次元バブルプロットを作画 メニューまたはポップアップ・メニューで

- [表示] [次のグラフ]の操作を2回繰り返す。
- [修飾] [散布点の表現] [点識別・垂線]
- [修飾] [3次元散布点マーク] [表示
- [修飾] [3次元散布点の塗りつぶし色] [色立体 RGB 高明度]
- [修飾] [3次元散布点の輪郭サイズ] [1.5 倍]/[2倍]/[0.9 倍] 適当なバブルサイズになるように輪郭サイズを何度か調整する
- ウインドウ画面の右半分を右クリックするごとに,3次元図が少しずつ右回転する
- ウインドウ画面の左半分を右クリックするごとに,3次元図が少しずつ左回転する

また,散布点が重なるような場合は,

[修飾] [3次元散布点の塗りつぶし色] [塗りつぶし色の透過処理] [透過させる]

順1

下記の xcampus ビューアの操作で講習会評価構成比の三色三角バブルグラフ³を作画

[ウインドウ]メニュー [view2.g] で3次元バブルプロット とは別のウインドウに描く。

メニューまたはポップアップ・メニューで

- [表示] [次のグラフ]の操作を5回繰り返す。
- [修飾] [散布点の表現] [点識別]
- [奥行軸] [圧縮] [0%]
- [修飾] [3次元散布点マーク] [表示 順]
- [修飾] [3次元散布点の塗りつぶし色] [色平面 RGB 高明度]
- [修飾] [3次元散布点の塗りつぶし色] [塗りつぶし色の透過処理] [透過させる]
- [修飾] [3次元散布点の輪郭サイズ] [1.5倍]/[2倍]/[0.9倍]
- 適当なバブルサイズになるように輪郭サイズを何度か調整する
- [修飾] [3次元図の横軸目盛を三角グラフ用に変更] [変更]
- [横・縦軸] [横軸伸張] [110%]/[101%]
 - [横軸圧縮] [90%]/[99%]

三角形の右下の頂点が右端に収まるように横軸の伸張圧縮を何度か行う

³ 三色三角バブルグラフについては拙著 [2009] に詳しい。特にその第4章の4.8節を参照。 兵庫県立大学経済経営研究所「研究資料」 230 2010年3月

で num 数値ウインドウを最前面に出して,回帰分析結果の単相関係数行列を調べる⁵。 あるいは,のブラウザ上の送信結果のテキストに表示される同じ結果を調べる。

ę	simple co	rrelation	matrix,	cases =	10
	У	х	Z		
	$y=(Y/S)^*$	$x=(X/S)^*$	z=(Z/S)*		
y y=(Y/S)*	1.0000				
$x x=(X/S)^*$	-0.2852	1.0000			
z z=(Z/S)*	-0.5979	-0.5978	1.0000		
5	simple co	rrelation	matrix,	cases =	11
	Y	Х	Z		
	Y=(b)	X=(a)	Z=(c)		
	4 0000				
Y Y=(b)	1.0000				
Y Y=(b) X X=(a)	1.0000 0.3139	1.0000			

⁴ リンク線と水平軸との角度(リンク角) が y / x の比率に比例することは,前稿[2010年2月]の脚注9参照。

⁵ 構成比(シェア)の3変量×,y,zの間には, x+y+z=100 の関係が成り立ち,その各2変量間には原理的に逆 (負の)相関が成立する可能性が高い(拙著[2009]の第5章5.4節を参照)、元の評価点の3変量X,Y,Z同士の相関は, 独立の3要素を選定していれば,相関(相関係数の絶対値)は低いはずである。

§7. 顧客満足度アンケートの品質・価格・付随サービスの三色三角バブルグラフ

次のような顧客満足度アンケート(満足度加算方式)を行ったと想定する。

商品の「品質」についての満足度(要する良いかどうか)について,10点満点でお答えください。 商品の「価格」についての満足度(要する安いかどうか)について,10点満点でお答えください。 商品の「付随サービス」についての満足度(要する親切かどうか)について,10点満点でお答えください。 そして,3項目の満足度を単純に合計して,その合計に占める「品質」(良い)満足度の構成比,「価格」(安い)満足度の構成比,「付随サービス」(親切)満足度の構成比の3変量による三色三角バブルグラフを描く。 散布点の大きさ(バブル)は満足度合計に比例させる。

なお,商品に替えて外食メニューの場合では,「味」「価格」「量」の満足度で計測することも一考であろう。 Excel に仮想顧客満足度アンケート(満足度加算方式)の調査結果を記述

	icrosof	t Excel – to	ernary-user-evalu	ation-uc.xls										UC,
	ファイル(圧)) 編集(E)	表示(⊻) 挿入① 書	拭(2) ツール(1) き	データ(D) ウィンドウ(W) ヘ	ルプ(田)					欠測値			đΧ
D	差 🔲 🛛	a 🛯 🗛	🖪 🆤 🕺 🖻 🛱	• 🛷 ID + Cl +	🤐 Σ - 🦺 🛍 100%	6 🗸 🕐 🎽 Mi	S Pゴシック	• 11 ·	BZI		- E S	健田・	ð - A	- »
	B9	 -	ん顧客											
	A	В	C	D	E	F	G	Н	I	J	К	L	M	Ē
1					「神戸コンシューマー・	スクール」 資料								
2					作成:兵庫県立大学:	経済学部 斎藤	清							
3					2010年2月18日									
4			仮想の顧客満足り	夏アンケート										
5			商品の「品質」につ	いての満足度(裏	厚する良いかどうか)に	ついて,10点満点	気でお答えく	(ださい						
6			商品の「価格」につ	いての満足度(要	厚する安いかどうか)に	ついて,10点満点	気でお 答えく	(ださい						
7			商品の「付随サー	ビス」についての湯	嵩足度(要する親切かと	ごうか)について,	10点満点1	でお 答えくだ	さい					_
8				tion the damage of										_
9		顧客	品質(良い)	価格(安い)	付随サービス(親切)	評価点合計								_
10	1	a	6	6	2	14								_
11	2	b	2	10	3	15		ha ## -*	+11.051(6	++ ++ -++	• • • • • • • • • • • • • • • • • • • •			_
12	3	<u>c</u>	1	#N/A	4	#N/A		火洛テーダ	めり #N/A	ま/こは =N/	40			_
13	4	<u>d</u>	3	9	1	13								_
14	0	e f	8	10	9	20								_
16	7	- 	2	0	10	10								_
17	, 8	b	7	2		10								_
18	9	1	í í	0		10		すべてゼロ	評価					
19	10	i	8	2	8	18		, .cen						
20	11	k	1	7	6	14								
21	12	1	10	6	7	23								
22														
23														
24														
25														
26														
27	<u> </u>													
H 4	► N/G	Graph1 <u>λ She</u>	<u>et1</u> /				1							
図形	の調整(R))• 🔓 🖈 –	Þi170 - 🔪 🔪	4	्रे 🖳 🔜 🔌 - 🚄 -	▲ - = = =	🗖 🕤 🗸							
עדב	۲											NUM		

B9のセルをクリックし, E21のセルまでドラッグして選択 F11 キーをクリックして, グラフ作成

[グラフ] [グラフの種類]上で [レーダー]で 形式[塗りつぶしレーダーチャート]を選択 [グラフ] [プロットエリアの書式設定]上で 領域の色で 白 を選択

C10 のセルをクリックし, E21 のセルまでドラッグして選択して[コピー]

N 12	icrosof	it Excel - t	ernary-user-evalua	ation-uc.xls										
8	ファイル(E) 編集(<u>E</u>)	表示(⊻) 挿入(⊉) 書	式(0) ツール(1) ラ	データ(D) ウィンドウ(W) ^	リルプ(田)					欠測(<u>ē</u>		đΧ
	🚔 🔲		🖪 🖤 🗴 🖻 🙉	• 🚿 📭 • • •	🤐 🗴 🗸 🏄 🌆 1009	6 - ? » M	S Pゴシック	• 11 ·	влт			% €≣	m • 💩 • A	۰»
	010	••••••	£ 6									· • 1		• •
		B	<u>~</u> 0	D	F	F	G	н	I		K	1	M	
1			~		「袖戸コンジューマー・	マクール」資料	4		•	Ŭ	IX.		101	
2					作成:丘庸厚立大学;	経済学部 斎藤	清							
3					2010年2月18日									-
4			仮想の顧客満足度	「アンケート	2010 (2)(10)									-
5			商品の「品質」につ	いての満足度(要	する良いかどうか)に	ついて,10点満点	でお答えく	(ださい						-
6			商品の「価格」につ	いての満足度(要	する安いかどうか)に	ついて,10点満点		(ださい						
7			商品の「付随サーb	ビス」についての深	満足度(要する親切かと	どうか)について,	10点満点1	でお 答えくだ	さい					
8														
9		顧客	品質(良い)	価格(安い)	付随サービス(親切)	評価点合計								
10	1	а	6	6	2	14								
11	2	b	2	10	3	15								
12	3	C	1	#N/A	4	#N/A		欠落データ	あり #N/A	または =N/	40			
13	4	d	3	9	1	13								
14	5	e	9	10	9	28								
15	6	if	2	0	10	12								
16	7	g	9	8	2	19								
17	8	h	7	2	1	10								
18	9		0	0	0	0		すべてゼロ	8半1曲					
19	10	ν <u>μ</u>	8	2	8	18								
20	11	K	1	1	5	14								
21	12	. 1	10	0	/ <u>,</u>	23								
22														
H A	► н\.	Graph1 <u>∖Sh</u> e	eet1 /					•						
网形	の調整(F	0 - 1 - 1-	トシェイプ(U) + 🔪 🔪 [😷 🖉 🔜 💩 - 🥒 -									
עדב	۲.				-0* 17287 E3393		···· ··· ·					NUM		

Web 版 xcampus のページ ternary-user-evaluation-uc.htm のフォームに [貼り付け]

送信結果に対して [編集] [すべて選択]して反転させ [編集] [コピー] xcampus ビューア の [Web 結果の貼り付け] ボタン 🚾 をクリック

§6のと同じ xcampus ビューアの操作で商品満足度構成比の3次元バブルプロットを作画

^{§6}のと同じ xcampus ビューアの操作で商品満足度構成比の三色三角バブルグラフを作画

xcampus ビューア の [ウインドウ] [num.n]

で num 数値ウインドウを最前面に出して,回帰分析結果の単相関係数行列を調べる。 あるいは,のブラウザ上の送信結果のテキストに表示される同じ結果を調べる。

> simple correlation matrix, cases = 10 у X Z $y=(Y/S)^* x=(X/S)^* z=(Z/S)^*$ y y=(Y/S)* 1.0000 x x=(X/S)* -0.3931 1.0000 z z=(Z/S)* -0.6481 -0.4455 1.0000 simple correlation matrix, cases = 11 Y=(b) X=(a) Z=(c)1.0000 Y Y=(b)0.2220 1.0000 X X=(a) -0.0597 0.2504 1.0000 Z Z=(c)

ここで, y:価格の満足度構成比%, x:品質の満足度構成比%, z:付随サービスの満足度構成比% Y(b):価格満足度, X(a):品質満足度, Z(c):付随 s サービス満足度

§8. 顧客満足度の品質・価格・付随サービスのメーカ識別三色三角バブルグラフ

前§7と同じ顧客満足度アンケート(満足度加算方式)でメーカー識別を行ったと想定する。 商品の製造メーカー名(販売店別分析であれば販売店名)をお答えください。 商品の「品質」についての満足度(要する良いかどうか)について,10点満点でお答えください。 商品の「価格」についての満足度(要する安いかどうか)について,10点満点でお答えください。 商品の「付随サービス」についての満足度(要する親切かどうか)について,10点満点でお答えください。 そして,3項目の満足度を単純に合計して,その合計に占める「品質」(良い)満足度の構成比,「価格」(安 い)満足度の構成比,「付随サービス」(親切)満足度の構成比の3変量による三色三角バブルグラフを描く。 散布点の大きさ(バブル)は満足度合計に比例させる。散布点をメーカー識別文字で区別する。

なお,商品に替えて外食メニューの場合では,「味」「価格」「量」の満足度でメニュー識別で計測すること も一考であろう。

Excel に仮想顧客満足度アンケート(満足度加算方式でメーカー識別)の調査結果を記述

B10 のセルをクリックし, F22 のセルまでドラッグして選択

F11 キーをクリックして, グラフ作成

[グラフ] [グラフの種類]上で [レーダー]で 形式[レーダーチャート]を選択 [グラフ] [プロットエリアの書式設定]上で 領域の色で 白 を選択

グラフの種類 ? 🔀	プロット エリアの書式設定	?×
標準 ユーザー設定 グラフの種類(Q): 形式(D): ● 円 ※ 散布図 ● 一 ● <th></th> <th>></th>		>
サンプルを表示する(い) (ア) 標準グラフに設定(E) OK	OK	

[グラフ] [元のデータ]上で [データの範囲]の系列の[行]を選択 [目盛線]で 目盛り線のチェックを外す 「グラフ1 [グラフ オプション] 上で

評価項目を軸とするレーダーチャートが作画される。 なお,各線を右クリックし[データ系列の書式設定]で線の色や種類を変更することができる。

•

兵庫県立大学経済経営研究所「研究資料」 230 2010年3月

図形の調整 ⑭・ 💫 オードシェイブ ⑭・ 🔪 🔍 〇 🔛 📾 🐗 🔅 🗵 🔷 🎍 🖉 🕹 - 🚄 - 🚍 🚍 🚍 🔐

18 19

Graph1 Sheet1

ЪĹ

NUN

Web 版 xcampus のページ ternary-user-evaluation-mfr-uc.htm のフォームに [貼り付け]

送信結果に対して [編集] [すべて選択]して反転させ [編集] [コピー] xcampus ビューア の [Web 結果の貼り付け] ボタン 🔀 をクリック

§6・§7のと同じ操作で商品満足度構成比のメーカー識別の三色三角バブルグラフを作画

以下の操作で商品満足度構成比のメーカー識別の3次元バブルプロットのy - x 平面散布図を作成の3次元図バブルプロット上で

3次元バブルプロットのy - z平面散布図を作成するには

の3次元図バブルプロット上で

[横・縦軸] [横軸圧縮] [0%]

ウインドウ画面の右半分を右クリックするごとに,3次元図が少しずつ右回転する ウインドウ画面の左半分を右クリックするごとに,3次元図が少しずつ左回転する この回転操作を繰り返してy-z平面散布図を作成することができる。

3次元バブルプロットのx - z平面散布図を作成するには

の3次元図バブルプロット上で

[横・縦軸] [3次元図縦軸圧縮] [0%] ウインドウ画面の右半分を右クリックするごとに,3次元図が少しずつ右回転する ウインドウ画面の左半分を右クリックするごとに,3次元図が少しずつ左回転する この回転操作を繰り返してx-z平面散布図を作成することができる。

⁶ 同一識別文字(同一印字)が連続するケース(例えば月次や四半期の系列の同じ年内の同一印字)では,連続同一文字の2番 目以降のリンク線の描画を省く仕様になっているからである。

§9.講習会評価(評価点配分方式)のスカイライン図・扇形散布図・三次元三色虫ピングラフ

次のような講習会評価アンケート(評価点配分方式)を行ったと想定する。

講習会を総合評価して,100 点満点でお答えください。

- その総合評価点を下記の3つの要素に配分し,その配分点の合計が総合評価点に一致するようにして下さい。 「知見」が得られた(要する為になった)ことの配分点
 - 「興味」が湧いた(要するにおもしろかった)ことの配分点
 - 「理解」できた(要するに分かった)ことの配分点
 - そして,3つのグラフを描く。
- ・総合評価点と「知見」配分点の比率の【スカイライン図】
- ・総合評価点を縦軸に、「知見」配分点を横軸にとって描く【扇形散布図】
- ・横軸「知見」配分点,縦軸に「興味」配分点,奥行軸に「理解」配分点をとって描く三次元図に散布点の大
- きさ(バブル)を総合評価点に比例させ,散布点の色を配分点構成で変化させる【三次元三色虫ピングラフ】 Excel に仮想講習会評価アンケート(評価点配分方式)の調査結果を記述

B12 のセルをクリックし, B24 のセルまでドラッグして選択し,

さらに Ctrl キーを押しながら D12 のセルをクリックして, F24 までドラッグして選択 F11 キーをクリックして, グラフ作成

[グラフ] [グラフの種類]上で [縦棒]で形式[積み上げ横棒]を選択

[グラフ] [プロットエリアの書式設定]上で 領域の色で 白 を選択

グラフの種類 ? 🔀	プロット エリアの書式設定	2
 標準 ユーザー設定 グラフの種類(②) 形式(D) 一種種 ○ 円 ※ 款布図 ● 面 ○ ドーナツ ③ ドーナツ ③ レーダー 等高線 * バブル 	パターン 領域 ・ ・ ・	
オプション 構み上げ横棒 - 項目ごとに値の相対関係 を表示します。 「標準の書式(型)	サンブル	
<u>サンプルを表示する(V)</u>		
し の に (二 第 年 9 フ ル に 該 定 し)		

積み上げ横棒グラフが描かれる

D13のセルをクリックし, F24のセルまでドラッグして選択して[コピー]

🔀 M	crosoft	Excel - s	kyline-studen	t-evaluation-uc.xl	s											
8	ファイル(E)	編集(<u>E</u>)	表示(⊻) 挿入(D 書式(<u>O</u>) ツール(<u>T</u>) データ(<u>D</u>) ウィン	∽∽∞ ヘルプ(⊞)							質問	を入力してください	× _ 1	đΧ
0	ê 🔲 ê	a 🔨 🧉	🔍 🌮 🐰 🖻	n 🛍 • 🛷 🗠 - 🕲		👬 🛍 100% 🔹	MS Pゴシック	• 11	• E	3 I U		🔤 🦃 %	00. 0.+ 0.+ 00. g		- 🕭 - <u>A</u>	· • •
	D13	-	f ∗ 30													_
	A	В	С	D	E	F	G	Н		Ι	J	K	L	M	N	
1						「神戸コンシューマ	ァー・スクール」資	料								
2						作成:兵庫県立7	マ学 経済学部 斎	藤清								_
3				(二相の 静和 今年 (1	((元 (元) (五) ()	2010年2月26日										-
4			離初合た公会	1仮想の講習会評価	1(評価点配分方す	5) アンケート			_							+
6			再省云で総合	部門面して,100点洞 その総合評価占な	1月じの合んいにつ 下記の2つの要素	티 교수는 것 주 주	교상 남자 수람 사	総合評価占に		オストコ	いっ アノだう	2				+
7			1	「知見」が得られた	「記の3つの安弁 (更する為になっ)	に記力して,ての たことの配分占			- 50	900						+
Ŕ			1	1	講習会で「興味」	が湧いた(要する)	こおもしろかった)	ことの配分点								
9			Ļ	ļ	1	「理解」できた(裏	するに分かった)	ことの配分点								+
10			Ļ	Ļ	Ļ	Ļ										
11		例示	75	45	10	20										
12		受講者	総合評価点	<u>知見(為になる)</u>	興味(おもしろい)	理解(分かる)	内訳合計	チェック								
13	1	а	60	30	20	10	60									_
14	2	b	65	5	40	20	65		-	A =1.1.5		L				
15	3	с	20	10		5	15	評価点とその「	内訳	合計か・	一致しません	欠洛テー	タあり スペー	-ス		-
16	4	d	85	20	20	45	85		_							
1.9	5 6	e f	100	50	20	30	100									-
19	7	ι σ	76	50	6	20	76									+
20	8	h	40	20	15	5	40									
21	9	1	0	0	0	0	0					すべてゼ	コ評価			+
22	10	j	72	40	2	30	72									
23	11	k	56	6	40	16	62	評価点とその」	内訳	合計が・	一致しません					
24	12		92	60	12	20	92									_
25																-
26																
27																+-
H 4	► N\G	iraph1 /Gra	ph2/Graph3)	Sheet1 /				1								۶Ľ
図形	D調整(R)	- 🗟 4-1	Þi17@+ ∖	× 🗆 🔿 🔮 🗎	4 🗘 🖳 🛃 🏅	🔊 • 🏒 • 🗛 • 🚍	i 🗏 🗮 🗐 🗸									
עדב	*										4	3計=715		NUM		

====================================
ユーザデータセクション \$\$u \$c // クロスセクションデータ属性コマンド クロスセクションでは県名や企業名等の文字データを扱うことも多い.
\$\$u \$c // クロスセクションデータ属性コマンド クロスセクションでは県名や企業名等の文字データを扱うことも多い. 各文字変量には漢字2文字(英字4文字)のみ入力される.それを超える文字は無視される.
\$c // クロスセクションデータ属性コマンド クロスセクションでは県名や企業名等の文字データを扱うことも多い. 各文字変量には漢字2文字(英字4文字)のみ入力される.それを超える文字は無視される.
クロスセクションでは県名や企業名等の文字データを扱うことも多い. 各文字変量には漢字2文字(英字4文字)のみ入力される.それを超える文字は無視される.
各文字変量には漢字2文字(英字4文字)のみ入力される.それを超える文字は無視される.
文字系列変量名の先頭は「:n1.」「:n2.」「:n6.」のいずれかを用いる
0001 00 0012 00 aa // ケース始占 終占番号 数値系列変量名 単位 知見 ケースの数
\$d
・ ctype // ケース毎に読むタイプ
ユーザ自身が文字・数値データを
コーザデータの各行の末尾にも「//」を挿入してコメント文を記述できる
30 20 10
10 この数値部分を反転させて 10 5 1 この数値部分を反転させて
20 20 45 でのコピー部分を
13 0 35 [貼り付け]
50 6 20
20 15 5
· · · · · · · · · · · · · · · · · · ·
a,da // 和元
し かんし うち かん し うち 田 かん し うち 田 かん し うち ひょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し
│
数值出力範囲 \$d all // 全範囲
数値出力範囲 \$d all // 全範囲
数値出力範囲 \$d all // 全範囲
数値出力範囲 \$d all // 全範囲
数値出力範囲 \$d all // 全範囲
with a set of the set
with a line 数値出力範囲 \$d all // 全範囲 \$t // 全範囲 ************************************
wdiadda all // 全範囲 \$d all // 全範囲 \$t // 変数変換コマンド ** ·// 変数変換コマンド ** ·// 変数変換コマンド ** ·// 知見 他を分母xに選ぶ場合には,先頭にを切ける ** ·// 知見 他を分母xに選ぶ場合には,先頭を取る ** ·// 1 ·// 理解 ** ·// 1 ·// 取用 ** ·// 1 ·// 取用 ** ·// 1 ·// 日本 ** ·// 1 ·// 日本 ** ·// 1 ·// 回体 ** ·// 1 ·// 回休 ** ·// 1 <td< td=""></td<>
wdiadda all // 全範囲 \$d all // 全範囲 *** *** *** \$t // 変数変換コマンド *** *** ****
wdiii wdii wdii wdii wdii wdii wdii wd
with set of the set of
width wid
with a set of the set
sd all // 全範囲 \$t // 全範囲 \$t // 変数変換コマンド
Sd 3l1 // 全範囲 St // 変数変換コマンド St // 知見 他を分母×に選ぶ場合には、先頭にを付ける x=(b) // 興味 これを分母×に選ぶ場合には、先頭を取る x=(a+c) // 知見+興味 以下 同様 x=(a+c) // 知見+理解 変量選択可 x=(a+c) // 規株+理解 変量選択可 x=(a+c) // 規株+理解 変量選択可 x=(a+c) // 機株:10次字列P作成 ア=cr(y) =pr*(y,x,s,a,b,c,P) // 数値プリント 変量支援(の)の順位変量 j=r.1(y)blank // 総合評価点 y をxやsへの変更で別変量での並び替え可 j=r.g(y)blank // 総合評価点 y の大きい順(定数項 blank で欠測値にも未尾の順位)の順位変量 j j=r.1(y)blank // 総合評価点 y の大きい順の場合は先頭のを取る x=pmt(x,j) // 並び替え (順序数変量 j による) y=pmt(y,j) P-nam,:ci,P=pmt(P,j) P-nam,:ci,P=pmt(P,j) P-nam,:ci,P=pmt(P,j) P.nam,:ci,P=pmt(P,j) P.nam,:ci,P=pmt(P,j) P.nam,:ci,P=pmt(P,j) P.nam,:ci,P=pmt(P,j) P.nam,:ci,P=pmt(P,j) P.nam,:ci,P=pmt(P,j) Prown (P,j) P.nam,:ci,P=pmt(P,j) Pust Pust Pust Pust Pust Pust
Sd Sd all // 全範囲 St // 交数変換コマンド
Sd Sd all // 全範囲 St // 2数変換コマンド St // 知見 他を分母×に還ぶ場合には,先頭にを付ける x=(a) // 知見 他を分母×に還ぶ場合には,先頭にを付ける x=(a) // 知見- (/ 知見- してあ会分母×に還ぶ場合には,先頭を取る x=(a+c) // 知見- (/ 知見- 現味 x=(a+c) // 知見- (/ 無味,理解 変量選択可 x=(a+c) // 個体識別文字列P 作成 ?=:ci(y) // 個体識別文字列P 作成 ?=:ci(y) // 個体識別文字列P 作成 ?=:ci(y) // 出し
数値出力範囲 Sd all // 全範囲 St // 知見 分母 × としてa,b,c の項目のいずれか 2 項目以内を選ぶ ×=(a) // 知見 他を分母 × に選ぶ場合には,先頭にを付ける x=(b) // 興味 これを分母 × に選ぶ場合には,先頭を収る x=(a+b) // 知見+興味 x=(a+c) // 知見+興味 x=(a+c) // 規見+理解 x=(a+c) // 規具・理解 x=(a+c) // 人間集・理解 x=(a+c) // 人間集・理解 x=(a+c) // 人間集・理解 x=(a+c) // 人ととするの場合 ※ (// 人) 人) >s=(y)/x // 比率 この場合 // 数と言評価点 y タ日要素 × P=:ci(y) // 出会評価点 y 今日要素 × p=r(y,x,s,a,b,c,c) // 数値子打つ下

h 比率 = 総合評価点 y / 分母要素 x の参考値として 1 h=(1) 11 .=(0,h) // スカイライン図上の比率 h の横線 y=0*x+h の右辺係数 [0,h] の関数「.」 +=(h,0) // 扇形散布図上の比率 h の斜線 y=h*x+0 の右辺係数 [h,0] の関数「+」 z=(0*y) // すべてゼロの数値の変量zを作成(扇形散布図の原点に利用) // 3次元関数f b= -a -c +20 (つまり a+b+c = 20) k=(-1,-1,+20) // 3次元関数f b= -a -c +40 (つまり a+b+c = 40) I = (-1, -1, +40)m=(-1,-1,+60) // 3次元関数 f b= -a -c +60 (つまり a+b+c = 60) // 3次元関数f b= -a -c +80 (つまり a+b+c = 80) n=(-1,-1,+80) // 3次元関数f b= -a -c +100 (つまり a+b+c = 100) o=(-1, -1, +100)// 回帰分析 \$r ,run,y=(x) // yを被説明(従属)変数とし,xを説明(独立)変数とする回帰 // 被説明変数 y, 説明変数 a,b,c による重回帰の計測 .run.v=(a.b.c) // グラフセクション \$\$a \$d // 表示範囲 // 全範囲 all // スケールの目盛り指示コマンド(標準10ポイント) \$q // 変量 s の目盛りを細かく 2 ポイントごとに s,002 y,002 x,002 // ゼロ軸表示 \$z // 変量 s,y,x のゼロ軸表示 syx // プロット \$p x,y,s // 変量 x,y,s をを別スケール // 3次元図 スカイライン図 \$3 s,q, ,P,., // 縦軸 s,横軸 q,奥行軸なし,個体識別 P,関数.,合成用保存* s,r, ,P,* // 縦軸 s,横軸 r,奥行軸なし,個体識別 P,合成用保存* // 合成 比率スカイライン図(リンク面描画,3次元図圧縮) // 3次元図 扇形散布図 \$3 y,x, ,P,+,* // 縦軸 y,横軸 x,奥行軸なし,個体識別 P,関数+,合成用保存* z,z, ,P,* // 縦軸 z,横軸 z,奥行軸なし,個体識別 P,合成用保存【原点】 // 合成(2次元図上の散布点と原点のリンク,3次元図圧縮を利用) ---- 3要素立体図 ------// 3次元三色虫ピングラフ \$3 b,a,c,P=y,k,I,m,n,o,* // 縦軸 b,横軸 a,奥行軸 c,印字 P=バブル変量 y,関数 k,I,m,n,o,合成用保存* z,z,z,P, // 縦軸 z, 横軸 z, 奥行軸 z, 個体識別 P, 合成用保存【原点】 // 合成(3次元図上の散布点の垂線,バブル,塗りつぶし色,原点とのリンクを利用) _____ // 終了セクション \$\$

送信結果に対して「編集] 「すべて選択] して反転させ,

「編集] 「コピー]

xcampus ビューア の [Web 結果の貼り付け] ボタン 🚾 をクリック 下記の手順で講習会の総合評価 / 知見配分点の【スカイライン図】(並びの順序は総合評価点降順)を作成 xcampus ビューア上のメニューまたはポップアップ・メニューで [表示] [次のグラフ]の操作を3回繰り返す [散布点の表現] [点識別] 「修飾]

- [3次元散布点リンク] [縦面描画] [修飾]
- 「奥行軸] 「 圧縮] Γ0%1

を選択すると、所定のスカイライン図が描出される7。

- スカイライン図の塗りつぶし色を変更するには
- [修飾] [線・面の色] [3次元リンク面塗りつぶしの色]

で任意の色を指定することができる。

スカイライン図および扇形散布図については,拙著[2009]に詳しい。特にその第3章の3.4節を参照。 20

下記の手順で講習会の総合評価と知見配分点の【扇形散布図】

スカイライン図 とは別のウインドウに扇形散布図を描くことにする。メニューで [ウインドウ] [view1.g]を選び,別ウインドウを最前面に表示する。

メニューまたはポップアップ・メニューで

- [表示] [次のグラフ]の操作を6回繰り返す。
- [修飾] [散布点の表現] [点識別・垂線]
- [修飾] [3次元散布点マーク] [表示 順]
- [修飾] [3次元散布点リンク] [直線描画]
- [奥行軸] [圧縮] [0%]
- を選択すると所定の扇形散布図が描画される。
- 兵庫県立大学経済経営研究所「研究資料」 230 2010年3月

下記の手順で講習会評価の知見・興味・理解の三次元三色虫ピングラフ

スカイライン図 ・扇形散布図 とは別のウインドウに三次元三色虫ピングラフを描くことにする。 メニューで [ウインドウ] [新しいウィンドウを開く]を選び,新ウインドウを表示する。 メニューまたはポップアップ・メニューで

[表示] [次のグラフ]の操作を9回繰り返して,最後のグラフを表示する。

[修飾] [散布点の表現] [点識別・垂線]

[修飾] [3次元垂線の太さ] [2倍]ないし[3倍]

[修飾] [3次元散布点マーク] [表示 順]

[修飾] [3次元散布点の塗りつぶし色] [色立体 RGB 高明度]

[修飾] [3次元散布点の輪郭サイズ] [1.5 倍]/[2倍]/[0.9 倍] 適当なバブルサイズになるように輪郭サイズを何度か調整する

ウインドウ画面の右半分を右クリックするごとに,3次元図が少しずつ右回転する

ウインドウ画面の左半分を右クリックするごとに,3次元図が少しずつ左回転する

・総合評価の差異を強調するようにバブルサイズを面積比例ではなく直径比例に変える場合

[修飾] [3次元散布点の輪郭サイズ] [バブル変量比例] [線形]

・散布点が重なるような場合は,

[修飾]メニュー [3次元散布点の塗りつぶし色] [塗りつぶし色の透過処理] [透過させる] ・原点(0,0,0)と各散布点を結ぶ直線(リンク線)を描くには

[修飾] [3次元散布点リンク] [直線描画]

xcampus ビューア の [ウインドウ] [num.n]

で num 数値ウインドウを最前面に出して,回帰分析結果の単相関係数行列を調べる。 あるいは,のプラウザ上の送信結果のテキストに表示される同じ結果を調べる。

:	simple con	rrelation	matrix,	cases =	11
	У	а	b	С	
	y=pmt(y,	a=pmt(a,	b=pmt(b,	c=pmt(c,	
y y=pmt(y,	1.0000				
a a=pmt(a,	0.7180	1.0000			
b b=pmt(b,	0.2911	-0.2847	1.0000		
c c=pmt(c,	0.6539	0.2455	-0.0211	1.0000	

§10. 食品・外食の栄養成分表示のスカイライン図・扇形散布図・三次元三色虫ピングラフ

食品・外食の栄養成分表示の3大栄養素について調査する⁸。

食品・外食のうち,栄養成分表示が記載されている実例を麺類について集めてみた。そのうちの3大栄養素 「蛋白質」「脂質」「炭水化物」に注目し、その合計値を求め、次の3つのグラフを作画する。

・3大栄養素合計と「脂質」の比率の【スカイライン図】

・3大栄養素合計を縦軸に、「脂質」を横軸にとって描く【扇形散布図】

・横軸「蛋白質」,縦軸に「脂質」,奥行軸に「炭水化物」をとって描く三次元図に散布点のバブルを3大栄養 素合計に比例させ,散布点の色を栄養素構成で変化させ,散布点から垂線を下ろす【三次元三色虫ピングラフ】 Excel に食品・外食(ここでは麺類)の栄養成分表示の調査結果を記述

🔀 Mi	💐 Microsoft Excel - skyline-nutrients-uc.xls													
8	ファイル(<u>E</u>)	編集(<u>E</u>)	表示(⊻) 挿入(⊉) 書	:式@) ツール	(T) データ(D)	ウィンドウ(W) ヘルプ(E	Ð					質問を	入力してください	8×
Π ı	2 🔲 4	a 🕫 👝	🗅 🖤 🕹 🖻 🖷	• 🛷 10 +	CH + (0. E	- ¢i Zi ∰i 100%	• 🕜 🔌 MSF	ゴシック • 1	• B Z	u 🖹 🗐 🗐	1 3 % ,	•.0 .00 ·		ð • A • .
	E11		た 蛋白質(の)		1.68								-r -r total	
	A	В		n	F	F	G	н	I	, I	к	1	м	N .
1			Ŭ				9	「神戸コンシュー	マー・スクール	」資料			101	
2								作成:兵庫県立	大学 経済学音	ß斎藤 清				
3								2010年3月2日						
4			食品・外食の栄養	成分表示の	3大栄養素の	実例								
5				1 食当たり(あるいは100	g当たり,1 個当たり	りのグラム数							
6				Ļ	エネルギー(熱量kcal)								
7				Ļ	1	蛋白質(g)								
8				Ļ	+	Ļ	脂質(g)	14 1 11 at 2 S						
9				1	Ļ	1	1	反水化物(g)						
10				Ļ	Ļ	Ļ	Ļ	Ļ						
11		品目	詳細	1食(g)	エネルギー (kcal)	蛋白質(g)	脂質(g)	炭水化物(g)	ナトリウム (g)	塩分(食塩相 当量) (g)	蛋白質+脂質 +炭水化物合計			
12	1	а	即席中華麺 (油揚げ味付け)	85	375	8.3	13.7	54.7	2		76.7			
13	2	b	即席ワンタン (+粉末スープ)	52	253	5.4	15.2	23.7	2.1		44.3			
14	3	с	生ラーメン(+汁)	140	356	12.9	5.6	63.3	2.8		81.8			
15	4	d	生うどん(+汁)	220	401	12.4	1.5	84.3	1.4		98.2			
16	5	e	乾スパゲッティ	120	422	13.4	2.3	87.1	0		102.8			
17	6	f	即席皿うどん (+スープ)	70	320	5.7	13.1	44.8	1.5		63.6			
18	7	g	乾そば	100	345	13.2	0.4	72	0.9		85.6			
19	8	h	乾うどん	100	336	8.7	1.1	72.7	1.3		82.5			
20	9	i	即席スープバスタ	42	170	4.9	3.1	31	0.7		39			
21	10	j	外食和風スバ ゲッティ		602	19.4	19.7	85.5		3.8	124.6		記載無しは	スペース
22	11	k	外食ぎつねそば		405	17.8	10.4	78.3		5.3	106.5			
23	12	1	外食きつねうどん		368	13.7	9.3	73.4		5.9	96.4			
24	N NAG	month /Gra	ph2 (Granh3) Shoa	н /										
図形の	の調整(B)	- 🔓 🖓 -	ipriz∧orapib <u>∧oree</u> ŀ9i1/⊅@ + ∕ ≽ [1 🥼 🔅 🔊	🔊 - 🥖 - 🗛		1	1					
ועדב	-										合計=1002		NUM	

B11 のセルをクリックし, C23 のセルまでドラッグして選択し, さらに Ctrl キーを押しながら F11 のセルをクリックして, H23 までドラッグして選択 F11 キーをクリックして, グラフ作成。前§9の と同じ手順で積み上げ横棒グラフ

⁸ 食品の標準成分については,香川[2007][2008][2009]などを参照。多くの加工食品には標準栄養成分表が記載されて いる。その記載値の実測調査については菊谷・船山・建部・牛尾・井部・鎌田 [2008] など参照。外食についても,神戸市では 「健康こうべ21」http://www.city.kobe.lg.jp/life/health/promotion/kobe21/のサポーター店施設として栄養成分表示の飲 食店を登録している。全国の多くの都市でも外食の栄養成分表示を推進している。 兵庫県立大学経済経営研究所「研究資料」 230 2010年3月 23

F12のセルをクリックし, H23のセルまでドラッグして選択して[コピー]

🔀 Mi	Aicrosoft Excel - skyline=nutrients=uc.xls ファイルビ 編集(2) 表示(2) 挿入(4) 書式(2) ツール(2) データ(2) ウィンドウ(2) ヘルブ(1) 質問を入力して(ださい - 6 ×														
8	ファイル(E)	編集(<u>E</u>)	表示(公) 挿入(1) 書	拭(2) ツール	(T) データ(D)	ウィンドウ(W) ヘルプ(E	Ð					質問を)	入力してください	• - 8 :	×
	ê 🔛 ê	3 🔨 🥔	🖪 🖤 🐰 🖻 🛍	• 🚿 🗠 •	CH + 🍓 Σ	- 21 ZI 🛍 100%	- 🕐 🌺 MSF	ゴシック - 11	• B I	<u>u</u> ≣ ≣ ≣	· 🛱 🗑 % ,	+.0 .00 f	ŧ≓ t≓ 🖂 •	<u>ð</u> - <u>A</u> -	
	F12	-	∱ 8.3												
	А	В	С	D	E	F	G	Н	I	J	К	L	M	N T	-
1								「神戸コンシュー	マー・スクール	刁資料					
2								作成:兵庫県立2	大学 経済学音	ß斎藤 清					
3					- 1 *** ** ** *			2010年3月2日							
4			夏品・外夏の宋賓	成ガ衣示の 1 金业たい/	3人米養奈の キェレは100	美例 - 北たけ きのおたり	しのガニノ教								
5				良白/こり(のるいは100	度当/こり,口固当/こい 熱量kool)	ガリクラム数								
7				+	1	arcaff(a) 雷白臂(a)									
8				1 1	Ť		脂質(g)								
9				ļ	ļ	ļ	Ļ	炭水化物(g)							
10				Ļ	Ļ	Ļ	Ļ	Ļ							
11		品目	詳細	1食(g)	エネルギー (kcal)	蛋白質(g)	脂質(g)	炭水化物(g)	ナトリウム ②	塩分(食塩相 当量) (g)	蛋白質+脂質 +炭水化物合計				
12	1	а	即席中華麺 (油揚げ味付け)	85	375	8.3	13.7	54.7	2		76.7				
13	2	b	即席ワンタン (+粉末スープ)	52	253	5.4	15.2	23.7	2.1		44.3				
14	3	с	生ラーメン(+汁)	140	356	12.9	5.6	63.3	2.8		81.8				
15	4	d	生うどん(+汁)	220	401	12.4	1.5	84.3	1.4		98.2				
16	5	е	乾スバゲッティ	120	422	13.4	2.3	87.1	0		102.8				
17	6	f	即席皿っとん (+スーブ)	70	320	5.7	13.1	44.8	1.5		63.6				
18	7	g	乾そば	100	345	13.2	0.4	72	0.9		85.6				
19	8	h	乾うどん	100	336	8.7	1.1	72.7	1.3		82.5				
20	9	i	即席スーフバスタ	42	170	4.9	3.1	31	0.7		39				
21	10	j	外食和風スハ ゲッティ		602	19.4	19.7	85.5		3.8	124.6		記載無しは	スペース	
22	11	k	外食きつねそば		405	17.8	10.4	78.3		5.3	106.5				_
23	12		外食ぎつねうどん		368	13.7	9.3	73.4	ļ	5.9	96.4				_
_24 I∎ ∎	⊾ы∖с	iraph1 //Gr	aph2/Graph3\Shee	t1 /				1						→[[-
図形の	」調整(R)	• k 1-	・・・、・・・・、 <u>・・・・、</u> ・・・・・・・・・・・・・・・・・・・・・・・		1 📣 🔅 🙍	🔊 💩 • 🏒 • A									
											A=L_1000		NUM		

Web 版 xcampus のページ skyline-nutrient-uc.htm のフォームに [貼り付け]

送信結果に対して[編集] [すべて選択]し反転させ, [編集] [コピー] xcampus ビューア の [Web 結果の貼り付け] ボタン 🚾 をクリック 前§9の と同じ手順で

麺類の3大栄養素合計/脂質の【スカイライン図】(並びの順序は3大栄養素合計の降順)

[横・縦軸] [3次元図縦軸伸張]

[200%] / [150%]

[3次元図縦軸圧縮] [90%]/[99%] などの縦軸の伸張圧縮を何度か行って,印字gの棒グラフを枠外に出してスカイラインを上方に伸張する。

前§9のと同じ手順で麺類の蛋白質・脂質・炭水化物の三次元三色虫ピングラフ

xcampus ビューア の [ウインドウ] [num.n]

で num 数値ウインドウを最前面に出して,回帰分析結果の単相関係数行列を調べる。 あるいは,のプラウザ上の送信結果のテキストに表示される同じ結果を調べる。

	simple co	rrelation	matrix,	cases =	12
	У	а	b	С	
	y=pmt(y,	a=pmt(a,	b=pmt(b,	c=pmt(c,	
y y=pmt(y,	1.0000				
a a=pmt(a,	0.9308	1.0000			
b b=pmt(b,	0.0768	0.1097	1.0000		
c c=pmt(c,	0.9466	0.8396	-0.2386	1.0000	

ここで, y:3大栄養素合計(a+b+c) g a:蛋白質g,b:脂質g,c:炭水化物g §11. 食品・外食の栄養成分表示の蛋白質・脂質・炭水化物の三色三角バブルグラフ

食品・外食の栄養成分表示の3大栄養素についての前§10の調査結果をそのまま使う。

食品・外食のうち,栄養成分表示が記載されている実例を麺類について集め,そのうちの3大栄養素の「蛋白質」「脂質」「炭水化物」に注目し,その合計値に占める各栄養素の構成比に関して,散布点の大きさ(バ ブル)を3大栄養素合計に比例させる【三色三角バブルグラフ】を作画する。

	前§10のと同様に Excel に食品・外食(ここでは麺類)の栄養成分表示の調査結果を記述														
🔀 Mi	crosoft	Excel - sl	kyline-nutrients-u	c.xls											X
8);	7ァイル(E)	編集(E)	表示(公) 挿入(1) 書	式(2) ツール	(T) データ(<u>D</u>)	ウィンドウW ヘルプひ	Ð					質問をノ	力してください	B	×
	ê 🔲 i	8 🔨 🎒	🖪 🖤 🕺 🖻 🛍	• 🚿 🗠 -	CH + 🤮 Σ	- 21 XI 🛍 100%	🔹 💽 🥐 MS P	ゴシック 🛛 🕌 11	• B I	u ≡ ≡ ≡	· ∰	*.0 .00 €	≠ t ≢ ⊞ •	🕭 - A	÷.,
	F11	-	★ 蛋白質(g)												
	А	В	С	D	E	F	G	Н	I	J	К	L	М	N	-
1								「神戸コンシュー"	マー・スクール	J資料 R 文苑 清					-
2								11F成: 兵庫県立/ 2010年3月2日	∖子 栓/疗子音) 斎膝 府					-
4			食品・外食の栄養	成分表示の	3大栄養素の	実例		2010437]20							-
5				1 食当たり()	あるいは100	g当たり,1個当たり	りのグラム数								
6				Ļ	エネルギー()	執量kcal)									_
7				1	↓ ↓	蛋日質(g)	肥厚化								-
9				+	↓ 	↓ 	加貝(2)	炭水化物(g)							-
10				Ţ	Ţ	Ļ	Ì	↓							-
			≣¥ śm	1 - (-)	エネルギー	定白鹭(山)	叱辱(_)	ニート こう	ナトリウム	塩分(食塩相	蛋白質+脂質				
11		00 8	6 + #0	「良(宮)	(kcal)	电日月(1)	加目見(2)	灰小花柳醇	(g)	当量)(g)	+炭水化物合計				
12	1	а	即席中華麺 (油揚If味付け)	85	375	8.3	13.7	54.7	2		76.7				
13	2	b	即席ワンタン (+粉末スープ)	52	253	5.4	15.2	23.7	2.1		44.3				
14	3	с	生ラーメン(+汁)	140	356	12.9	5.6	63.3	2.8		81.8				_
15	4	d	生うどん(+汁)	220	401	12.4	1.5	84.3	1.4		98.2				-
16	5	e	乾スハケッティー	120	422	13.4	2.3	87.1	0		102.8				-
17	6	f	(+スープ)	70	320	5.7	13.1	44.8	1.5		63.6				
18	7	g	乾そば	100	345	13.2	0.4	72	0.9		85.6				-
19	8	h i	虹査フ ニーゴ パ フ ね	100	336	8.7	1.1	/2./	1.3		82.5				-
20			外食和風スパ	42	170	4.0	0.1		0.7				Am the American		-
21	10	j	ゲッティ		602	19.4	19.7	85.5		3.8	124.6		記載無しは	スペース	
22	11	k	外食きつねそば		405	17.8	10.4	78.3		5.3	106.5				_
23	12	1	外食ぎつねうどん		368	13.7	9.3	73.4		5.9	96.4				
14 4	▶ м∖С	àraph1 /Gra	ph2/Graph3\ <u>Shee</u>	<u>t1</u> /				1						•	
図形の	D調整(R)	- 🗟 🖈 - H	シェイプ(ビ・ 🔪 🛛		a 🥼 🔝 🖪	🔊 🕭 • 🚄 • 🗛 ·	· = = = : • (7.							
ועדב	:										合計=1002		NUM		

B11 のセルをクリックし, C23 のセルまでドラッグして選択し,

さらに Ctrl キーを押しながら F11 のセルをクリックして, H23 までドラッグして選択 F11 キーをクリックして, グラフ作成。

[グラフ] [グラフの種類]上で [レーダー]で 形式[塗りつぶしレーダーチャート]を選択

[グラフ] [プロットエリアの書式設定]上で 領域の色で 白 を選択

グラフの種類 ? 🔀	ブロット エリアの書式設定 🛛 🔹 💽 🔀
 標準 ユーザー設定 グラフの種類(2): 形式(1): 一様棒 一様棒 一日 一日	前部 () () 自動(A) () ()
	UK 77/2/1

品目を軸とするレーダーチャートが作画される 炭水化物の系列の領域が,蛋白質や脂質の領域を覆い隠している。 図の中の炭水化物の系列の領域を右クリック [データ系列の書式設定] [パターン] [領域]で「なし」選択

■蛋白質(g)
■脂質(g)
口炭水化物(q)

F12のセルをクリックし,H23のセルまでドラッグして選択して[コピー]

🔀 Mi	icrosof	Excel = s	kyline-nutrients-u	ic.xls											
8)	ファイル©	編集(E)	表示(V) 挿入① 書	<u> </u> 式(1) ツール	(① データ(①)	ウィンドウ団 ヘルプ(Ð					質問を入	し力してください		8 3
D.	2 🖬 .	a 🛯 🗛	13 1 × 15 m	• 10 ·	Ci + 🤐 Σ	- 41 71 4m 100%	• 🤋 🔌 MS F	・ 1	• B Z	UEEE	B 9 % .	28 28 5	e e l m .	3-1	۸.
	E1.2		£ 00	10 ⁻¹	·	21 21 100					·	100 410 1	4 4 1 1 1 1 1	-	-
_	Δ.	B	0.5	D	F	F	G	н	T		K		M	N	-
1	~				<u> </u>			「神戸コンジュー	マー・スクール	レ資料	IS IS		141	18	-
2								作成:長庫県立:	大学 経済学會	8 斎藤 清					
3								2010年3月2日							
4			食品・外食の栄養	成分表示の	3大栄養素の	実例									
5				1 食当たり(あるいは100	」g当たり、1 個当たい	リ)のグラム数								
6				1	エネルギー(熱量kcal)									
7				1	Ļ	蛋白質(g)									
8				1	Ļ	ļ	脂質(g)								
9				1	1	1	Ļ	炭水化物(g)							
10				1	Ļ	Ţ	Ļ	1							
11		品目	詳細	1食(g)	エネルギー (kcal)	蛋白質(g)	脂質(g)	炭水化物(g)	ナトリウム (g)	塩分(食塩相 当量) (g)	蛋白質+脂質 +炭水化物合計				
12	1	а	即席中華麺 (油揚げ味付け)	85	375	8.3	13.7	54.7	2		76.7				
13	2	b	即席ワンタン (+粉末スープ)	52	253	5.4	15.2	23.7	2.1		44.3				
14	3	С	生ラーメン(+汁)	140	356	12.9	5.6	63.3	2.8		81.8				
15	4	d	生うどん(+汁)	220	401	12.4	1.5	84.3	1.4		98.2				
16	5	e	乾スパゲッティ	120	422	13.4	2.3	87.1	0		102.8				
17	6	f	即席皿うどん (+スープ)	70	320	5.7	13.1	44.8	1.5		63.6				
18	7	g	乾そば	100	345	13.2	0.4	72	0.9		85.6				
19	8	h	乾うどん	100	336	8.7	1.1	72.7	1.3		82.5				
20	9	1	即席スープバスタ	42	170	4.9	3.1	31	0.7		39				
21	10	j	外食和風スパ ゲッティ		602	19.4	19.7	85.5		3.8	124.6		記載無しは	スペー	ス
22	11	k	外食ぎつねそば		405	17.8	10.4	78.3		5.3	106.5				_
23	12	1	外食ぎつねうどん		368	13.7	9.3	73.4	ļ	5.9	96.4				
24	N NAC	moht /Gr	anh? (Gmanh?) Shoo	H /	1										11
	olimet (D)	napin ∠Gra	apre Action Di Actee		a 4 🚓 🕷				1					-	- 11
	Wan轻(巴 In	• 18 7 -			ાં ના 🛟 🔐		•=====	•			0.81, 1000				
コマン	r										合計=1002		NUM		

兵庫県立大学経済経営研究所「研究資料」 230 2010年3月

 ====================================

 ====================================
\$\$u \$c // クロスセクションデータ属性コマンド クロスセクションでは県名や企業名等の文字データを扱うことも多い. 各文字変量には漢字2文字(英字4文字)のみ入力される.それを超える文字は無視される. 文字系列変量名の先頭は「:n1,」「:n2,」「:n6,」のいずれかを用いる
\$c // クロスセクションデータ属性コマンド クロスセクションでは県名や企業名等の文字データを扱うことも多い. 各文字変量には漢字2文字(英字4文字)のみ入力される.それを超える文字は無視される. 文字系列変量名の先頭は「:n1,」「:n2,」「:n6,」のいずれかを用いる
\$c // クロスセクションデータ属性コマンド クロスセクションでは県名や企業名等の文字データを扱うことも多い. 各文字変量には漢字2文字(英字4文字)のみ入力される.それを超える文字は無視される. 文字系列変量名の先頭は「:n1,」「:n2,」…「:n6,」のいずれかを用いる
クロスセクションでは県名や企業名等の文字データを扱うことも多い. 各文字変量には漢字2文字(英字4文字)のみ入力される.それを超える文字は無視される. 文字系列変量名の先頭は「:n1,」「:n2,」…「:n6,」のいずれかを用いる
クロスセクションでは県名や企業名寺の又子テーダを扱うことも多い。 各文字変量には漢字2文字(英字4文字)のみ入力される.それを超える文字は無視される. 文字系列変量名の先頭は「:n1,」「:n2,」…「:n6,」のいずれかを用いる
各文字変量には漢字2文字(英字4文字)のみ入力される.それを超える文字は無視される. 文字系列変量名の先頭は「:n1,」「:n2,」「:n6,」のいずれかを用いる
又字糸列変量名の先頭は ':n1,」':n2,」 ':n6,」のいすれかを用いる
0001.00 0012.00.aa // ケース始点、終点番号 、数値系列変量名:単位 蛋白質 ーー マルナ 10 欠 の 的 字 粉
,00 // 仝日で同一クース範囲, 釵旭系列変重名; 単位 脂質
cc // 空白で同一ケース範囲 数値系列恋景名・単位 炭水化物
データ入力指示コマンド
20
ctype // ケース毎に読むタイプ
ユーサロ身か又子・奴値ナータを
テキストファイルまたは Excel シートからコピー&ペーストされたい
ユーザデータの各行の末尾にも ' / / 」を挿入してコメント文を記述できる
コーザ文字・物体データをこの行声後にペーフトする
8.3 13.7 54.7
54 150 027
0.4 IO.2 23.1
12.4 1.5 84.3 この奴値部分を反転させて
'ジ・サ _ 2・3 _ ツ・・ 「 でのコビー部分を
5.7 13.1 44.8
13.2 U.4 /2
4.9 3.1 31
10.4 10.7 85.5
19.4 19.7 65.5
17.8 10.4 78.3
13.7 9.3 73.4
\$\$
亦릗詞是創出
久里心与刮当
Sa
a,aa // 蛋白賞
b bb //
c.cc // 炭水化物
all // 全範囲
\$t // 変数変換コマンド
↓ \$t // 変数変換コマンド ↓ X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる
\$t // 変数変換コマンド X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる
\$t // 変数変換コマンド X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる X=(a) // 蛋白質 変量対応関係は変更可
\$t // 変数変換コマンド
\$t // 変数変換コマンド
\$t // 変数変換コマンド X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる X=(a) // 蛋白質 Y=(b) // 脂質 Z=(c) // 炭水化物
\$t // 変数変換コマンド
\$t // 変数変換コマンド
\$t //変数変換コマンド X=(a) //蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) //炭水化物 S=(X+Y+Z) S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 賠質構成比 x
\$t // 変数変換コマンド
\$t //変数変換コマンド
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記のa,b,cの入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% z z=(Z/S)*100 // 炭水化物構成比% z z=(z/S)*100 // 炭水化物構成比% z
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記のa,b,cの入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p
\$t //変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記のa,b,cの入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 医(X+Y+Z) S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pt*(X,Y,Z,S,X,Y,Z,p) // 数値プリント
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記のa,b,cの入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
\$t //変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記のa,b,cの入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント // 数値プリント
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 第 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(c/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記のa,b,cの入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記の a,b,cの入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント */
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 ②量対応関係は変更可 Z=(c) // 炭水化物 ②量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記のa,b,cの入力変量とを対応させる Y=(b) // 脂質 2=(c) // 炭水化物 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 ②量対応関係は変更可 Z=(c) // 炭水化物 ②量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 室量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント ************************************
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記のa,b,cの入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 第 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(c2)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,Z,p) // 数値プリント Sr // 回帰コマンド ,run,Y=(X,Z) // 被説明変数 y, 説明変数 x,z による重回帰の計測 ,run,Y=(X,Z) // 被説明変数 Y, 説明変数 X,Z による重回帰の計測
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記の a,b,cの入力変量とを対応させる Y=(b) // 脂質 空量対応関係は変更可 Z=(c) // 炭水化物 空量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント ************************************
St // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Z=(a) // 蛋白質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,Z,p) // 数値プリント ************************************
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(z/S)*100 // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 空量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
\$t // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 空量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
St // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 借質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
St // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(x/S)*100 // 脂質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,Z,p) // 数値ブリント
St // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる X=(a) // 蛋白質 変量対応関係は変更可 Y=(b) // 脂質 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント St // 回帰コマンド ,run,y=(x,z) // 被説明変数 y, 説明変数 x,z による重回帰の計測 ,run,Y=(X,Z) // 被説明変数 Y, 説明変数 X,Z による重回帰の計測 St // 変数変換コマンド f=(-1, -1, +100) // 関数 f y= -x -z +100 (つまり x+y+z = 100) i=(100, 50, 0, 0, 0, 50) // 三角形の頂点と中点の座標 j=(0, 50, 100, 50, 0, 0) k= k=(0, 0, 0, 50, 100, 50) (二角形の頂点と中点の3次元図印字用の文字系列 0
St // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記の a,b,cの入力変量とを対応させる Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント Sr // 夜説明変数 y, 説明変数 x,z による重回帰の計測 ,run, y=(x,z) // 被説明変数 Y, 説明変数 X,Z による重回帰の計測 .run, Y=(X,Z) // 被説明変数 Y, 説明変数 X,Z による重回帰の計測 St // 変数変換コマンド f=(-1,-1,+100) // 関数 f y= -x -z +100 (つまり x+y+z = 100) i=(10,50,00,0,0,50) // 三角形の頂点と中点の座標 j=(0,50,100,50,0,0) k=(0,0,0,50,100,50) Q=:ci(i)****** // 三角形の頂点と中点の 3 次元図印字用の文字系列 Q
St // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる X=(a) // 蛋白質 変量対応関係は変更可 Y=(b) // 脂質 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白質構成比% y y=(Y/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列p =pr*(X,Y,Z,S,x,y,Z,p) // 数値プリント ********************************* Sr // 回帰コマンド ,run,y=(x,Z) // 被説明変数 y, 説明変数 x, z による重回帰の計測 ,run,Y=(X,Z) // 被説明変数 Y, 説明変数 X,Z による重回帰の計測 .************************************
St // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる X=(a) // 蛋白質 変量対応関係は変更可 Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 第 S=(X+Y+2) // 3 大栄養素合計 S x:(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白質構成比% y z z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
st // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる X=(a) // 蛋白質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y4Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白質構成比 % y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(K,Y,Z,S,x,y,z,p) // 数値プリント
st // 変数変換コマンド X=(a) // 蛋白質 X,Y,Z の各変量と上記の a,b,c の入力変量とを対応させる X=(a) // 蛋白質 変量対応関係は変更可 Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 Sc(X+Y42) // 3 大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白質構成比 % y z=(2/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,Z,p) // 数値ブリント
St // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記の a,b,c の入力変量とを対応させる X=(a) // 蛋白質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 脂質構成比% y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(X) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,Z,P) // 数値プリント ** // 一個帰コマンド ,run,y=(x,Z) // 被説明変数 y, 説明変数 x,Z による重回帰の計測 .run,Y=(X,Z) // 被説明変数 Y, 説明変数 X,Z による重回帰の計測 ** // 変数変換コマンド f=(-1,-1,+100) // 関数 f y= -x -z +100 (つまり x+y+z = 100) i=(10,50,0,0,0,0) // 三角形の頂点と中点の座標 k=(0,0,0,50,100,50) // 三角形の頂点と中点の3次元図印字用の文字系列 Q ** // 原点の変量 (ケースの数はデータ分) i=(@,i) // 原点の変量 (ケースの数はデータ分) i=(@,i) // 原点の変量 と三角形の頂点と中点を連結した変量
St // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記の a,b,cの入力変量とを対応させる X=(a) // 蛋白質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白構成比 x y=(Y/S)*100 // 蛋白構成比 x y=(Y/S)*100 // 蛋白構成比 x y=(Y/S)*100 // 炭水化物構成比 % z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント
St // 変数変換コマンド X=(a) // 蛋白質 X,Y,Zの各変量と上記のa,b,cの入力変量とを対応させる 次=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(X/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白質構成比 % z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの敞布点印字用の文字系列p =pt*(X,Y,Z,S,X,Y,Z,p) // 数値プリント
St // 変数変換コマンド X=(a) // 蛋白質 X=(a) // 蛋白質 Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S x=(x/S) ¹ 100 // 蛋白質構成比 x y=(Y/S) ¹ 100 // 蛋白質構成比 % y=(Y/S) ¹ 100 // 蛋白質構成比 % y=(Y/S) ¹ 100 // 蛋白質構成比 % y=(X,Y,Z,S,x,y,Z,P) // 労働 ブリント * * \$r // 回帰コマンド ,run,Y=(X,Z) // 被説明変数 Y, 説明変数 X,Z による重回帰の計測 * * * // 変数変換コマンド f=(-1,-1,+100) // 関数 f y= -x -z +100 (つまり x+y+z = 100) i=(10,50,0,0,50,0) // 三角形の頂点と中点の座標 i=(0,50,100,50,0,0) // 三角形の頂点と中点の 3 次元図印字用の文字系列 0 ************************************
St // 変数変換コマンド X=(a) // 蛋白質 X=(a) // 蛋白質 Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y+Z) // 3大栄養素合計 S な(x/s)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白質構成比 x y=(Y/S)*100 // 蛋白質構成比 % y z=(Z/S)*100 // 炭水化物構成比% z p=:ci(x) // データの散布点印字用の文字系列p =pr*(X,Y,Z,S,x,y,z,p) // 数値プリント ************************************
St // 変数変換コマンド X=(a) // 蛋白質 X=(a) // 蛋白質 Y=(b) // 脂質 変量対応関係は変更可 Z=(c) // 炭水化物 変量対応関係は変更可 S=(X+Y-Z) // 3大栄養素合計 S 2 x=(X/S)*100 // 蛋白質構成比 % 2 y=(Y/S)*100 // 蛋白質構成比 % y z=(Z/S)*100 // 炭水化物構成比 % y z z=(Z/S)*100 // 炭水化物構成比 % y z p=:ci(x) // データの散布点印字用の文字系列 p =pr*(X,Y,Z,S,x,y,z,p) // 数値ブリント Sr // 回帰コマンド , run, Y=(X,Z) // 被説明変数 y, 説明変数 x,Z による重回帰の計測

送信結果に対して[編集] [すべて選択]し反転させ [編集] [コピー] xcampus ビューア の [Web 結果の貼り付け] ボタン 🚾 をクリック §6・§7・§8の と同じ操作で蛋白質・脂質・炭水化物の栄養素構成比の3次元バブルプロット作画

§6・§7・§8のと同じ操作で蛋白質・脂質・炭水化物の栄養素構成比の三色三角バブルグラフを作画

蛋白質・脂質・炭水化物の栄養素構成比の「小」三色三角バブルグラフを作画 上図では,すべての散布点が左下方に集中し,青系のみの色彩になっている。左下方の小さい三角形の頂点に

「ウインドウ] メニュー 「新しいウィンドウを開く] で 3次元バブルプロット や三色三角バブルグラフ とは別のウインドウに「小」三色三角バブルグラフを描く。 メニューまたはポップアップ・メニューで [表示] [次のグラフ]の操作を8回繰り返して,最後のグラフを表示する。 [修飾] [散布点の表現] [点識別]

- 「奥行軸] 「圧縮」 「0%」

- [修飾] [3次元散布点マーク] [表示 順] [修飾] [3次元散布点の塗りつぶし色] [色平面 RGB 高明度] [修飾] [3次元散布点の塗りつぶし色] [塗りつぶし色の透過処理] [透過させる]
- [3次元散布点の輪郭サイズ] [1.5倍]/[2倍]/[0.9倍] 「修飾]
- 適当なバブルサイズになるように輪郭サイズを何度か調整する
- 「修飾] 「3次元図の横軸目盛を三角グラフ用に変更] 「変更]
- [横・縦軸] [横軸伸張] [110%]/[101%]
 - 「横軸圧縮] [90%]/[99%]
 - 三角形の右下の頂点が右端に収まるように横軸の伸張圧縮を何度か行う
- [3次元図縦軸伸張] [110%]/[101%] 「横・縦軸] [3次元図縦軸圧縮] [90%]/[99%]
 - 三角形の中央の頂点が上端に収まるように縦軸の伸張圧縮を何度か行う
- また, 左下の(0.0.100)の点と各散布点を結ぶ直線(リンク線)を描くには
- [修飾] [3次元散布点リンク] [直線描画]
- なお,リンク線と水平軸との角度は, v / xの比率に比例する。

xcampus ビューア の [ウインドウ] [num.n]

で num 数値ウインドウを最前面に出して,回帰分析結果の単相関係数行列を調べる。 あるいは、のブラウザ上の送信結果のテキストに表示される同じ結果を調べる。

> simple correlation matrix, 12 cases = v х $y=(Y/S)^* x=(X/S)^* z=(Z/S)^*$ y y=(Y/S)* 1.0000 x x=(X/S)* -0.2821 1.0000 z z=(Z/S)* -0.9712 0.0453 1.0000 simple correlation matrix, cases = 12 Y Х Ζ X=(a) Z=(c) Y=(b) 1.0000 Y Y=(b) 0.1097 1.0000 X X=(a) -0.2386 0.8396 1.0000 Z Z=(c)

ここで, v: 脂質構成比%, x: 蛋白質構成比%, z: 炭水化物構成比% Y(b): 脂質g, X(a): 蛋白質g, Z(c): 炭水化物g

§12. 食品成分の脂肪酸構成のスカイライン図・扇形散布図・三次元三色虫ピングラフ

食品成分の脂肪酸構成について調査する⁹。

食品のうち穀類について、「飽和脂肪酸」「一価不飽和脂肪酸」「多価不飽和脂肪酸」の脂肪酸データを集め、 次の3つのグラフを作画する。

・主要脂肪酸合計と「一価不飽和脂肪酸」の比率の【スカイライン図】

・主要脂肪酸合計を縦軸に、「一価不飽和脂肪酸」を横軸にとって描く【扇形散布図】

・横軸「飽和脂肪酸」,縦軸に「一価不飽和脂肪酸」,奥行軸に「多価不飽和脂肪酸」をとって描く三次元図に 散布点のバブルを主要脂肪酸合計¹⁰に比例させ,散布点の色を脂肪酸構成で変化させ,散布点から垂線を下ろ す【三次元三色虫ピングラフ】

Excel に食品(ここでは穀類)の脂肪酸構成を記述

🔀 Mi	A Microsoft Excel - ternary-fatty-acids-uc.xts ③ ファイル(F) 編集(G) 表示(A) 増入(G) 書式(G) ツール(F) データ(G) ウィンドウ(M) ヘルブ(H) 質問を入力して(ださい ・ G ×														
8	ファイル(圧)	編集(E)	表示(⊻) 挿入(⊉) 書	拭◎ ツール	(T) データ(D)	ウインドウ(2) ヘルプ(4	Ð						質問を入力して	ださい 🔹	_ 8 ×
lΠι	2 🔲	a 🛯 🖉	🗅 🖤 🗼 🖻 🛍	• 🛷 🗠 -	CH + . E	- ¢↓ ₹↓ 🌆 100%	• 🕐 🔌 MSF	ゴシック - 11	- B J			% . ***	-28 EE EE	- 🕭 -	Α.
	F11	•	ん 約和脂肪	話 缘(σ)	1.00	21 25									
	A	В	C	D	E	F	G	Н	Ι	J K		L	М	N	-
1								「神戸コンシュー	マー・スクー	ール」資料					
2								作成:兵庫県立7	大学 経済学	学部 斎藤 清					
3								2010年3月2日						_	
4			食品成分表の脂肪	方酸構成の多	モ例	データ出所:文部科	学省 科学技術・	学術審議会・資源	調査分科	会報告 五訂増補	日本食	<u>は標準成分</u>	分表]2005年	1月	
5				単位	肥唇(_)	http://www.mext.	go.jp/bmenu/sh	ngi/ gi/vutu/ gi/vut	u3/toushii	n/05031802.htm					
7				+		俞和脂肪酸(a)									
8				1	* 1	1	一価不飽和脂肪	₫₿(g)							
9				Ĵ	ļ	ļ	↓	多価不飽和脂肪	酸(g)	3つの 脂肪酸	後の合計	_			
10				Ļ	Ļ	ļ	Ļ	Ļ		Ļ					
		品日	ii± 4⊞	単位(可食	貼質(a)	韵和脂肪酸(a)	一価不飽和脂	多価不飽和脂		主要脂肪酸					
11				部 _度)		25/ UNB /// B/(0/ B/	肪酸(g)	肪酸(g)		1 34/18/10/89					
12	1	a	食バン トレート	100	4.4	1.33	1.50	1.04			3.87				
13	2	0	していました	100	1.2	0.14	0.05	0.31			1.00				
14	3	5	印度中華めん	100	1.2	0.20	0.11	0.01			1.00				
15	4	d	非油揚げ	100	5.2	1.26	1.86	1.55			4.67				
	5	P	マカロニ・スパ	1.00	22	0.51	0.20	1.12			1.83				
16	-	-	ケッティ乾	4.00	0.7						0.04				
17	U	T	<u> 払木L小値粒位</u> 装白半「水短数	100	2.7	0.62	0.82	0.90			2.34				
18	7	g	粒]	100	0.9	0.29	0.21	0.31			0.81				
	8	h	胚芽精米[水稻	100	2.0	0.55	0.52	0.69			1.76				
19			親粒]	100	1.0	0.40	0.10	0.00			1.60				
20	9	i i	ビザクラフト	100	1.9	0.40	0.42	1.37			2.56		記載無いけ	フペーフ	
- 61	10	,	そうめん・ひやむ	100	0.0	0.40	0.70	1.07			2.00			~ ~ ~	
22	11	k	ぎ乾	100	1.1	0.25	0.10	0.56			0.91				
23	12	1	もち	100	0.8	0.25	0.19	0.28			0.72				
_24 ₫₫	⊢н∖с	iraph1 /Gra	ph2/Graph3\Shee	t1 /		I									
- 図形の	の調整化	 - □ - □ - □ 	ŀシェイプ@・ ∖ ヽ		a 4 🔅 🛛	🔊 💩 • 🦽 • 🗛	. = = = : .								
ועדב	<u>-</u>									合	it=22.59		NUM		

B11 のセルをクリックし, C23 のセルまでドラッグして選択し,

さらに Ctrl キーを押しながら F11 のセルをクリックして, H23 までドラッグして選択 F11 キーをクリックして, グラフ作成。前 § 11 の と同じ手順でレーダーチャート作画

 ⁹ 食品成分値については,文部科学省科学技術・学術審議会・資源調査分科会報告[2005]や香川[2009]などを参照されたい。文部科学省のページ <u>http://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu3/toushin/05031802.htm</u>で閲覧できる。
 ¹⁰ 主要脂肪酸合計は,「飽和脂肪酸」「一価不飽和脂肪酸」「多価不飽和脂肪酸」の合計である。これら以外の脂肪酸は微量なので本稿の分析から外している。即席めんの脂質・脂肪酸組成については坂牧・井口・菊谷・市川[2001]を参照。
 34 神戸コンシューマー・スクール 2009 での Web 版 xcampus 分析操作事例・続編

F12のセルをクリックし, H23のセルまでドラッグして選択して[コピー]

■ Microsoft Excel - ternary-fatty-acids-uc.xls 図1 ファイル(F) 編集(F) 表示(か) 指入の また(の) ツール(F) データ(0) ウィンドウ(w) ヘルブ(h) 留間な入力して(がさい)															
8	7ァイル(<u>E</u>)	編集(<u>E</u>)	表示(⊻) 挿入(⊉) 書	式(0) ツール	(<u>T</u>) データ(<u>D</u>)	ウィンドウ(型) ヘルプ(4	Ð					1	質問を入力してく	ださい・	-8×
	÷ 🖪 🕯	a 🛯 🖉	R 🖤 🕺 🖻 🛍	• 🚿 🗠 •	CH + 🎑 Σ	- <u>2</u> ↓ <u>2</u> ↓ <u>100%</u>	- 🕐 🌺 MSF	・11	• 1	B <i>I</i> <u>U</u>		%	-00 th th	- 🎝 -	A
	F12	•	<i>f</i> ∗ 1.33		0							-			_
	A	В	С	D	Е	F	G	Н	Ι	J	К	L	М	N	
1								「神戸コンシュー	マー・ス	(クール)資	\$料				
2								作成:兵庫県立フ	大学 経	済学部 斎	藤清				
3			소민준사로주말		7/10/		1996 (1) 3 1 996 14 (1)	2010年3月2日							
4			貫品成分表の脂肪	腹構成の 男 寛伝	5191	テーダ出所:又部和	+子首科子技術	子術番譲会・貨湯	調査2	ガ科会 報1	古 五訂 増補日本復 21.000 ktm	「品標準成な	7衣]2005年	ія	
5				<u>単位</u>	貼智(a)	http://www.mext.	go. p/ p menu/ sn	ingi/ gijvutu/ gijvut	<u>us/tot</u>	usnin/050	<u>51602.ntm</u>				
7				1		徇和脂肪酸(σ)									
8				ļ	ļ	↓	一価不飽和脂肪	酸(g)							
9				Ļ	Ļ	Ļ	Ļ	多価不飽和脂肪	酸(g)		3つの脂肪酸の合	it.			
10				1	Ļ	Ļ	1	1			Ļ				
11		品目	詳細	単位(可食 部g)	脂質(g)	飽和脂肪酸(g)	一価不飽和脂 <u>肪酸(g)</u>	多価不飽和脂 <u>肪酸(g</u>)			主要脂肪酸合計				
12	1	а	食バン	100	4.4	1.33	1.50	1.04			3.87				
13	2	b	うどん生	100	0.6	0.14	0.05	0.31			0.50				
14	3	9	<u>甲華のん生</u> 即席中華めん	100	5.2	0.28	0.11	0.61			1.00				
15	-	u	非油揚げ	100	0.2	1.20	1.00	1.00			4.07				
16	5	e	ゲッティ乾	100	2.2	0.51	0.20	1.12			1.83				
17	6	f	玄米[水稲穀粒]	100	2.7	0.62	0.82	0.90			2.34				
18	7	g	精白米[水稲穀 粒]	100	0.9	0.29	0.21	0.31			0.81				
19	8	h	胚芽精米[水稲 穀粒]	100	2.0	0.55	0.52	0.69			1.76				
20	9	i	そば生	100	1.9	0.40	0.42	0.80			1.62				
21	10	j	ビザクラスト	100	3.0	0.49	0.70	1.37			2.56		記載無しは	スペース	
22	11	k	そうめん・ひやむ ぎ乾	100	1.1	0.25	0.10	0.56			0.91				
23	12	1	もち	100	0.8	0.25	0.19	0.28			0.72				
24	N NAG	moht /Gr	anh? (Cranh?) Shor	+1 /											
図形の	の調整(R)		h∋riz⊼Grapio <u>Xonee</u> F∋ri1⊅(U) • ∖ ∖		a 🦛 🖗	🔊 • 🍠 • A	· = = = • •	7.							
ועדב	с				21 - 40 - 10 K		$\leftrightarrow = 1$	· ·			合計=22.59		NUM		
	We	b版z	xcampus (のペー	ジ skyl	ine-fatty-	acids-uc.	htm のフ	゚オ・	-46	こ [貼り	付け]			

神戸コンシューマー・スクール 2009 での Web 版 xcampus 分析操作事例・続編

§9・§10のと同じ手順で飽和・一価不飽和・多価不飽和の脂肪酸の三次元三色虫ピングラフ

xcampus ビューア の [ウインドウ] [num.n]

で num 数値ウインドウを最前面に出して,回帰分析結果の単相関係数行列を調べる。 あるいは,のブラウザ上の送信結果のテキストに表示される同じ結果を調べる。

	simple co	rrelation	matrix,	cases =	12	
	У	а	b	с		
	y=pmt(y,	a=pmt(a,	b=pmt(b,	c=pmt(c,		
y y=pmt(y	, 1.0000					
a a=pmt(a	, 0.9600	1.0000				
b b=pmt(b	, 0.9727	0.9599	1.0000			
c c=pmt(c	, 0.8721	0.7284	0.7490	1.0000		

ここで,y:主要脂肪酸合計(a+b+c) (g)

a:飽和脂肪酸(g),b:一価不飽和脂肪酸(g),c:多価不飽和脂肪酸(g)

§13. 食品成分の脂肪酸構成の飽和・一価不飽和・多価不飽和の三色三角バブルグラフ

食品成分の脂肪酸構成の飽和・一価不飽和・多価不飽和についての前§12の調査結果をそのまま使う。 食品のうち穀類について、「飽和脂肪酸」「一価不飽和脂肪酸」「多価不飽和脂肪酸」の脂肪酸データを集め、 主要脂肪酸合計に占める各脂肪酸の構成比に関して、散布点の大きさ(バブル)を主要脂肪酸合計に比例させ る【三色三角バブルグラフ】を作画する。

🔀 Mi	■ Microsoft Excel = ternary-fatty-acids=uc.xls ■] ファイルにり 編集(E) 表示(M) 挿入(D) 書式(M) ツール(T) データ(D) ウィンドウ(M) ヘルブ(H) (管管を入力して)(定た) レー ラ ×															
8) 7	マイル(E)	編集(E)	表示(公) 挿入(1) 書	:式@) ツール	(T) データ(D)	ウィンドウ(W) ヘルプ(E	Ð						9	質問を入力してく	だざい	- 8 ×
Πρ	÷ 🗖 :	- 	 ∩ ♥ ¼ ₪ @.	- -≪ ⊳-	Ci + (Δ , Σ	- <u>≜l Zi </u> ∰∎ 100%	- 🧿 » MSP	ゴシック - 11	- B	3 <i>Z</i> U		3 %	*. 0		🄊	- A
	F11	- .	▲ 飽和脂肪i	缘(g)	68	21 21 20				_						
	A	в	С	D	Е	F	G	Н	Ι	J	К		L	М	N	-
1								「神戸コンシューマ	ィー・ス	クール」 資	¥料					
2								作成:兵庫県立/	大学 経	済学部 斎	F藤 清					
3			소민준사동주말만		7 (10)		- 12 - 14 24 24 17	2010年3月2日		110 +0		- 小口 #		+		
4			夏品成分衣の脂肪	加酸構成の実	5194	テータ出所: 又部科 http://www.movit	├子首 朴子抆/// mp.im/h.mo.mu./obi	子何蕃譲云 資源	1調査の	ブ科芸 報1 iobie/050	古 五訂 瑁 佣 日 平 21 002 btm	夏品標	华成勿	「衣」2005年	1月	
6				<u>半位</u>	貼智(a)	nup.//www.mext.	gu, p/ p menu/ sni	ngi/ giwutu/ giwut	<u>uə7 tü ü</u>	ISHIN/ 000	<u>31602.ntm</u>					<u> </u>
7				↓ ↓		飽和脂肪酸(g)										
8				ļ	ļ	Ļ	一価不飽和脂肪	酸(g)								
9				Ļ	Ļ	Ļ	Ļ	多価不飽和脂肪	酸(g)		3つの 脂肪酸の・	合計				
10				↓ ↓	Ļ	ļ.	1	↓ 			Ļ	_				
11		品目	詳細	単位(可食 部g)	脂質(g)	飽和脂肪酸(g)	一価不飽和脂 肪酸(g)	多価不飽和脂 肪酸(g)			主要脂肪酸合計	-				
12	1	а	食バン	100	4.4	1.33	1.50	1.04			3.8	7				
13	2	b	うどん生	100	0.6	0.14	0.05	0.31			0.5	0				
14	3	c	甲華のん生	100	1.2	0.28	0.11	0.61			1.0	0				
15	4	d	非油揚げ	100	5.2	1.26	1.86	1.55			4.6	7				
16	5	e	マカロニ・スバ ゲッティ乾	100	2.2	0.51	0.20	1.12			1.8	3				
17	6	f	玄米[水稲穀粒]	100	2.7	0.62	0.82	0.90			2.3	4				
18	7	g	精白米[水稲穀 粒]	100	0.9	0.29	0.21	0.31			0.8	1				
19	8	h	胚芽精米[水稲 穀粒]	100	2.0	0.55	0.52	0.69			1.7	6				
20	9	i	そば生	100	1.9	0.40	0.42	0.80			1.6	2				
21	10	j	ビザクラスト	100	3.0	0.49	0.70	1.37			2.5	6		記載無しは	スペース	
22	11	k	そうめん・ひやむ ぎ乾	100	1.1	0.25	0.10	0.56			0.9	1				
23	12	1	もち	100	0.8	0.25	0.19	0.28			0.7	2				
24	N N A G	ranht /Gra	nh2 /Granh3 \ Shee	+1 /				4								
		n upri ∧ Gia			a 🚛 🖧 📖			2								201
120720) 11 11 12 12 (E)	• 16 J-1			ાં ના રુજ જિ	📾 🗠 • 🚣 • 🚣 •		•			A = 1 - 00					
コマンド	:										合計=22	.59		NUM		1

前§12のと同様にExcelに食品(ここでは穀類)の脂肪酸構成を記述

B11 のセルをクリックし, C23 のセルまでドラッグして選択し,

さらに Ctrl キーを押しながら F11 のセルをクリックして, H23 までドラッグして選択 F11 キーをクリックして, グラフ作成。§8の と同じ手順でレーダーチャート作画

F12のセルをクリックし, H23のセルまでドラッグして選択して[コピー]

🔀 M	Microsoft Excel - ternary-fatty-acids-uc.xls ファイルビ 編集(E) 表示(V) 挿入(D) 書式(Q) ツール(E) データ(D) ウィンドウ(W) ヘルブ(H) (質問を入力してください) - 8 ×														
8	ファイル(E)	編集(E)	表示(⊻) 挿入(2) 書	式(0) ツール	(T) データ(<u>D</u>)	ウィンドウ(W) ヘルプ(4	Ð						質問を入力してく	ださい 👻	_ 8 ×
D	2 🖬 🗃	3 🔁 🥔	🖪 🖤 🕺 🖻 🛍	• 🚿 🗠 -	CH + 🍓 Σ	- 2 Z Z I 100%	- 🕐 🌺 MSF	ゴシック - 11	• B	ΙU		% , 5	8 400 fm fm	- 🖄 -	A
	F12	-	∱ 1.33												
	A	В	С	D	E	F	G	н	Ι	J	К	L	M	N	-
1								「神戸コンシュー	マー・ス	クール」資	資料				
2								作成:兵庫県立	大学 経済	斉学部 汤	新藤 清				
3			金星成分素の膨脹	动植成不宜	ក (ភា)	データ中部・文部制	1学学 利学技術,		前面杏分	利合 胡	牛「玉訂馗浦口木會	見輝進成	公表12005年	18	
5			展回10%774XV271811	道位	2121	http://www.mext	n in/h menu/shi	于附普威云 貝加 ngi/gikutu/gikut	13/tour	shin/050	口·五口·自而口本度 131802 htm	四小宗 中川為	J) 10 2003 4		
6				Ļ	脂質(g)										
7				Ļ	Ļ	飽和脂肪酸(g)									
8				Ļ	Ļ	Ļ	一価不飽和脂肪	酸(g)							
9				Ļ	1	Ļ	↓ ↓	多価不飽和脂肪	酸(g)		3つの脂肪酸の合調	1			
10				↓ 単位(司會	Ļ	Ļ	↓ 	→ 多価不約和匙			Ļ				
11		品目	詳細	平位(可良 部g)	脂質(g)	飽和脂肪酸(g)	— 1110/11120/111111 <u>肪酸(g)</u>	沙仙小跑和加 <u>肪酸(g)</u>			主要脂肪酸合計				
12	1	а	食バン	100	4.4	1.33	1.50	1.04	ļ		3.87				
13	2	b	うどん生	100	0.6	0.14	0.05	0.31			0.50				
14	3	C	<u>甲華のん生</u> 即度由義内(100	1.2	0.28	0.11	0.61			1.00				
15	4	d	非油揚げ	100	5.2	1.26	1.86	1.55			4.67				
16	5	e	マカロニ・スパ ゲッティ乾	100	2.2	0.51	0.20	1.12			1.83				
17	6	f	玄米[水稲穀粒]	100	2.7	0.62	0.82	0.90			2.34				
18	7	g	精白米[水稲穀 粒]	100	0.9	0.29	0.21	0.31			0.81				
19	8	h	胚芽精米[水稲 穀粒]	100	2.0	0.55	0.52	0.69			1.76				
20	9	i	そば生	100	1.9	0.40	0.42	0.80	ĺ		1.62				
21	10	j	ビザクラスト	100	3.0	0.49	0.70	1.37			2.56		記載無しは	スペース	
22	11	k	そうめん・ひやむ ぎ乾	100	1.1	0.25	0.10	0.56			0.91				
23	12		もち	100	0.8	0.25	0.19	0.28			0.72				
24		moht /Gm	nh2 (Granh2) Shoo	+1 /											- ▼
		naprii A Gra	his Yearship Young		a 4			2							
LXI#S	OIIII登(円)	• 18 J-1	911700+ \ \			🖾 🗠 • 🚣 • 🚣 •		V •							
コマン	r.										合計=22.59		NUM		1

Web 版 xcampus のページ skyline-fatty-acids-uc.htm のフォームに [貼り付け]

送信結果に対して[編集] [すべて選択]し反転させ, 🔂 [編集] [コピー] xcampus ビューア の [Web 結果の貼り付け] ボタン 🚾 をクリック

§ 6・§ 7・§ 8・§ 11 の と同じ操作で飽和・一価不飽和・多価不飽和の脂肪酸構成比の 3 次元バブルプ

§6・§7・§8・§11のと同じ操作で飽和・一価不飽和・多価不飽和の脂肪酸構成比の三色三角バブル グラフを作画

xcampus ビューア の[ウインドウ] [num.n]

で num 数値ウインドウを最前面に出して,回帰分析結果の単相関係数行列を調べる。 あるいは,のプラウザ上の送信結果のテキストに表示される同じ結果を調べる。

> simple correlation matrix. cases = 12 х ٧ $y=(Y/S)^* x=(X/S)^* z=(Z/S)^*$ $y y=(Y/S)^*$ 1.0000 $x x = (X/S)^*$ 0.1399 1.0000 z z=(Z/S)* -0.9294 -0.4955 1.0000 simple correlation matrix, 12 cases = Υ Х 7 Y=(b) X=(a) Z=(c) Y Y=(b)1.0000 X X=(a) 0.9599 1.0000 ZZ=(c) 0.7490 0.7284 1.0000

ここで,y:一価不飽和脂肪酸構成比%,x:飽和脂肪酸構成比%,z:多価不飽和脂肪酸構成比% Y(b):一価不飽和脂肪酸g,X(a):飽和脂肪酸g,Z(c):多価不飽和脂肪g 参考文献

香川 芳子 編『食品80キロカロリ-ガイドブック5訂増補 見て覚える食品の栄養価』,女子栄養大学 出版部,2007年.

香川 芳子 監修『毎日の食事のカロリーガイド 5 訂増補 外食編/ファストフード・コンビニ編/市販食品 編/家庭のおかず編』, 女子栄養大学出版部, 2008 年.

香川 芳子 監修『五訂増補食品成分表 2010』, 女子栄養大学出版部, 2009年.

菊谷典久・船山惠市・建部晴美・牛尾房雄・井部明広・鎌田国広「市販加工食品の表示栄養成分調査」, 『東京都健康安全研究センター研究年報』59 号(2008),東京都健康安全研究センター,2009 年 3 月.

神戸市 市民参画推進局消費生活課「消費者庁開庁記念フォーラム in 神戸 ~ くらしを守る~」(講演録・ 神戸コンシューマー・スクール研究報告 No.1),神戸市市民参画推進局消費生活課,2010年1月.

坂牧成恵・井口正雄・菊谷典久・市川久次「即席めんの脂質及び脂肪酸組成」,『東京都立衛生研究所研究 年報』51 号(2000),東京都立衛生研究所(現東京都健康安全研究センター),2001 年 2 月.

文部科学省 科学技術・学術審議会・資源調査分科会 報告「五訂増補日本食品標準成分表」, 文部科学省 科学技術・学術政策局政策課資源室, 2005 年 1 月.

拙著『経済・産業・企業の比率と規模のグラフィックス』, (兵庫県立大学経済経営研究叢書B-3), 兵庫県立大学経済経営研究新, 2009年.

拙稿「神戸コンシューマー・スクール 2009 での Web 版 xcampus 分析操作事例 - 家計支出の都道府県 庁所在市別ランキング・データを用いて - 」『研究資料』 228,兵庫県立大学経済経営研究所,2010年2月.

拙稿「金融庁 XBRL データを組み込んだ学内外向け Web 分析システム xbrl 対応 XCAMPUS の実運 用 」『神戸商科大学創立八十周年記念論文集』, 兵庫県立大学経済経営研究所, 2010 年 3 月.

追記

奇しくも本稿脱稿の日(2010年3月8日)の日本経済新聞朝刊の「私の履歴書」の中で,ユニ・チャームの高原慶一郎会長は,紙の「記録する」「包む」「拭く」の3つの機能,「意欲」「感度」「能力」による社員評価など, 事象や案件を3つに「因数分解」する思考を紹介されている。その思考は,本稿の3つの要素を視覚化するための三色三角バブルグラフに符合するようにも思われる。